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1. Introduction: Characterizing Modern Psychometrics 

An important activity of psychologists consists in the measurement of 

mental characteristics. Typical examples of mental characteristics are: 

 Intelligence and other cognitive capabilities; 

 Personality traits; 

 Mood; 

 Preferences and opinions; 

 Knowledge concerning specific topics; 

 Psychic and mental disorders. 

A crucial aspect of the measured characteristics consists in the fact that 

they cannot be observed directly. Rather they have to be inferred on 

the basis of observed measures. Due to this feature they are called 

latent (mental) constructs. There exists a great variety of psychologi-

cal measure and measurement methods, respectively. Here are a few 

examples: 

 Classical psychological tests, like intelligence and personality 

tests; 

 Questionnaires; 

 Implicit Tests, i.e. tests employing measures (e.g. reaction times) 

that appear to have no association with the to be measured cha-

racteristics (e.g.racist attitude); 

 Behavioral measures (e.g. behavioral measures indicating the ag-

gression potential); 

 Exams for assessing knowledge and/or abilities; 

 Neuropsychological tests (e.g. EEG or fMRI); 

 Physiological test (e.g. measuring skin conductance). 

Psychometrics is concerned with the measurement of latent constructs. 

The discipline arose with the development of mental ability tests, pio-

neered by the French Alfred Binet (1857-1911). 

 Historical Remark 1-1: Mental ability testing: 

 The history of mental ability tests dates back to the beginning 

of the 20 century. In 1904 the French minister appointed a 

commission to recommend procedures for identifying intel-

lectually retarded children. 

 In 1905, Binet and Simon developed the first intelligence test 

consisting of 30 Items. Its aim was to identify retarded child-

ren requiring specific scholastic training. 

 In 1916, the Stanford-Binet intelligence test was constructed. 

This test is based on the Binet-Simon test. In the years 1937, 

1960, 1986 and 2003, revisions of the Stanford-Binet tests 

have been provided. 

 For further details, cf. Kaplan & Saccuzzo (2017). 
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 The first theoretical latent variable model of mental abilities is 

due to Charles Spearman (1863-1945) who assumed a general 

ability factor g and different specific factors. 

 Both types of factors are latent construct. Yet, whereas the 

general factor g is involved in each cognitive task the specific 

factors are relevant for specific tasks only (e.g. for performing 

verbal or spatial tasks). 

To get a better idea of the importance of psychometrics it is important 

to illustrate the specific problems that are associated with the measure-

ment of latent constructs. 

1.1 Problems Associated with the Measurement of Latent Constructs 

and the Importance of Psychometrics 

All branches of psychology are concerned with the measurement of 

latent constructs. For example, memory researchers are interested how 

different manipulations influence memory performance. However, me-

mory and memory performance are theoretical constructs that cannot 

be observed directly. Thus various measures of memory performance 

are employed. The most common measures are performance in free 

recall and in recognition. 

Due to the fact that observed scores are employed for measuring 

underlying constructs (and are relevant only in this respect) the follow-

ing two considerations are important: 

1. The obtained test scores have to be distinguished sharply from the 

mental constructs the test intends to measure. For example, Exami-

nee 1 might have a higher test score then Examinee 2 despite the 

fact that the latter is ranked higher with respect to the mental 

construct. 

2. Measurements are error prone. This is due to the fact that the scores 

are not only influenced by the measured construct but by additional 

causal factors (e.g. motivation, fatigue, mood, variations in the level 

of attention, errors of instruments). 

 Comment 1-1: Ignoring and minimizing measurement errors: 

 

The importance of measurement error differs between various 

branches of psychology. For example, in experimental psych-

ology the problem of measurement errors plays a less promi-

nent role than in other branches (cf. Section 1.2). 

 

This is due to the fact that experiments enable a great deal of 

control compared to observational studies. Due to this control 

and repetitions of trials measurement errors may be minimiz-

ed. For example, with reaction time (RT) experiments trials 

are repeated many times and the means of the RTs are evalu-

ated. 
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Summing scores or computing means is a general method for 

reducing measurement error. This method is also used in the 

context of the application of psychological tests and of quest-

ionnaires. 

Psychometrics is concerned with the structure of latent constructs and 

their measurement. By consequence the following issues have to be 

addressed: 

 Nature of the latent constructs and their relationship: Is the 

measured construct uni- or multidimensional? Which of these 

dimensions are measured by a specific test? How is the target 

construct related to other latent constructs? 

 Nature of the response functions: How are values on the latent 

constructs mapped onto responses? 

 Quality of the measurement instrument: Concerns issues like the 

precision of the instrument and the degree of measurement error, 

respectively, or the problem of biases. 

 Target of the measurement: Does the measurement instrument 

measure the target construct only or are other mental construct 

also captured? 

 Occasion and method specific influences: How is the result of 

measurement influenced by occasion specific influences and by 

the specific method employed? 

 Fairness of the measurement instrument: Is the test fair or are 

different groups (man or women, Black or White) discriminated? 

 Measurement invariance: Is the measured construct gauged in 

the same way in different groups of examinees? 

 Conclusions from observed values to values on the latent con-

structs: Given a specific value of the measurement. How can one 

predict the value on the measured latent construct? 

1.2 Psychometrics and the two Disciplines of Scientific Psychology 

In his presidential address as the president of the American Psycholo-

gical Association, Cronbach (1957) talks of two disciplines of scienti-

fic psychology which he terms »experimental« and »correlational«. 

According to this view the experimental branch is concerned with va-

riation of treatments (independent variables) whereas the correlational 

branch is focused on variance due to individual differences which is 

treated by the experimentalists as a nuisance. 

 Comment 1-2: Brain imaging and the neglect of individual 

differences 

 

The tendency to ignore individual differences seems to be 

practiced by brain imaging methodology, too. The mapping of 

activations is usually performed with respect to a standard 

brain thus ignored individual differences in brain structure 

and functioning. 
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According to Cronbach’s distinction psychometrics makes up a part of 

the correlational discipline. This can be concluded from the fact that 

psychometrics models are used to assess differences on the latent con-

struct between examinees. In addition, psychometric methods are mul-

tivariate, i.e. the latent construct is measured using more than one me-

asure. This is regarded as the only useful way to gauge latent con-

structs adequately since the latent mental construct results in different 

realizations in different situations. By contrast the experimental branch 

is mainly concerned with single outcome variables. Moreover, in case 

of taking multiple measures, their multivariate structure is frequently 

not handled adequately. 

The separation of the two psychological traditions results in the neg-

lect of interactions between treatments and individual characteristics. 

Obviously, individual characteristics moderate the effect of treatments 

manipulated by experimentalist, like instruction, training, or therapeu-

tic interventions. 

The separation between the two disciplines is also reflected by differ-

ences between cognitive and psychometric models. There have how-

ever been some attempts of unifying both types of approaches (cf. the 

discussion in Section 3.4). 

1.3 On the Distinction between »Old« and »New« Psychometrics 

According to a common view psychometrics may be classified into 

»old« and »new« psychometrics with classical test theory (CTT) being 

regarded as »old« and item response theory (IRT) as »new« psycho-

metrics. For example Embretson and Reise (2009, Chapter 2) make a 

distinction between »old« and »new« rules of measurement (cf. Table 

2.1 on page 15 of Embretson and Reise) exactly along this lines. 

 Comment 1-3: Old rules of measurement (Embretson & 

Reise, 2009): 

 
Their specification of the old rules by Embretson and Reise is, 

in part, problematic. Consider, for example, their old Rule 2: 

 Longer tests are more reliable than shorter tests. 

 

However, nobody would really accept this rule since it is 

well-known that a shorter test with more reliable items can be 

more reliable than a test with more but less reliable items. 

 

In addition, adding reliable test items to an existing test can 

result in a decrease of Cronbach’s alpha, a commonly used 

measure of the reliability of the sum of test items (Li, Rosen-

thal, and Rubin, 1996). 

The identification of CTT with »old« and IRT with »new« psychome-

trics has become problematic with the representation of the classical 

test models by means of structural equation models (Jöreskog, 1971) 

[for details, see below, Chapter 4.3]. In fact, is can be shown that the 

classical test models can be conceptualized as specific cases of item 
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response models. The only difference consists in the fact that different 

observed measures are modeled: Means and (co-) variances in case of 

classical test models and probabilities of different response categories 

in case of item response models. By consequence, the main difference 

of the two types of models consists in the usage of different response 

functions that map values of latent constructs as well as item charac-

teristics on observed responses (cf. the general psychometric model in 

Chapter 3). 

Thus a better characterization of the difference is that of Embretson 

(2010a) between procedures based on sum scores and item response 

models that model single items. 

 Comment 1-4: On item response models 

 
I am not sure whether Embreston considers structural equa-

tion models as item response models. 

 

According to the present view, the main difference between »old« and 

»modern« psychometrics consists in a radical different attitude concer-

ning the measurement model underlying the observed measures, speci-

fically: 

 »Old« psychometrics does not care about details of the measure-

ment model and how the psychometric constructs like reliability or 

validity depend on the underlying model. 

 In »modern« psychometrics measurement models and their proper-

ties are specified in detail. The dependences of psychometric con-

structs on the underlying measurement model are made explicit. 

The different attitudes with respect to the measurement model repre-

senting the measurement process results in an entire different practice, 

with the »old« psychometrics being characterized by the following fe-

atures: 

 The theoretical status of psychometric constructs, like reliability 

or validity, is not recognized. Specifically, it is not realized that 

these quantities can be measured (and get their significance) only 

with respect to an underlying theoretical model that is assumed to 

represent the measurement process correctly. 

 By consequence, the theoretical constructs are often identified 

with its measures, e.g. validity is identified with the validity coef-

ficient. 

 In general, the practice of the psychometrician consists in compu-

tation of coefficients that are computed on the observed responses. 

Typical examples are Cronbach’s  or the Spearman-Brown coef-

ficient using observed variances and covariances or correlations. 

These coefficients represent reliabilities of sum scores. 

 The conditions for application of these coefficients are simply ig-

nored and, in most cases, unknown to their users. 
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 Latent scores are estimated, and replaced respectively, by the sum 

or mean of the observed scores. 

 Coefficients are used to perform certain adjustments, e.g. using 

reliability coefficients to correct for attenuation. 

 General recommendations are provided that turn out to be wrong 

in its generality. A typical example is the recommendation: Cron-

bachs  (or the Spearman-Brown coefficient) generally underesti-

mate the true reliability. 

 Pseudo-paradoxes have been identified that do not exist under a 

strict latent variable conception. An example is the validity-reli-

abilty paradox that states that an increase in the reliability can 

result in a decrease of the validity of a measure. 

In contrast, modern psychometric is characterized by the following at-

tributes: 

 The psychometric model representing the measurement process 

makes up the central part in that all relevant quantities (reliability 

etc.) get their significance with respect to the underlying measure-

ment model only. If the model is not (approximately) correct these 

quantities are problematic. 

 The model provides an analysis of the structure of a test. By con-

sequence, more sophisticated estimators of reliability and validity 

based on the structural analysis of the test can be computed. 

 The theoretical status of concepts like reliability is made obvious. 

The concept of construct validity (Cronbach & Meehl, 1955) re-

ceives its full appreciation. 

 Coefficients are computed from model based predictions and not 

from observed measures resulting in improved estimates of the 

underlying theoretical constructs (in case of the measurement mo-

del being approximately correct). 

 The prerequisite of the correct application of coefficients, like 

Cronbach’s , as well as their limits are made explicit. 

 The limits of recommendations, like Cronbach’s  (or the Spear-

man-Brown coefficient) generally underestimate the true reliabili-

ty can be demonstrated. 

 Assumed paradoxes can be shown to disappear. 

 No adjustments (like correction for attenuation) are required since 

all relationships are represented within the measurement model 

and can be estimated in case of the model being correct. 

 The computation of latent construct scores of individual exami-

nees depends on the underlying model. 

 In general, the empirical adequacy of the measurement model can 

be tested. 

The actual presentation recognizes the superiority of modern psycho-

metrics. Therefore, the following exposition puts measurement models 
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in the center of the considerations. Derivations of relevant coefficients 

are based on the specified models. 
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2. On the Significance of Theoretical Constructs 

In this chapter we first consider the function of theoretical constructs 

in the natural sciences, and why theoretical constructs are required. 

Next, we examine the significance of psychological constructs in sci-

entific psychology. An important aspect of our discussion concerns the 

differentiation between constructs and pseudo-constructs. 

2.1 On the Function of Theoretical Constructs in the »Hard« Natur-

al Sciences 

The »hard« natural sciences, like physics of chemistry, are crowded 

with theoretical constructs. Typical examples are: electrons, protons, 

electromagnetic field, molecules, amino acids, double helix, enzymes, 

etc. The postulation of theoretical constructs seemingly opposes to Oc-

cam’s razor, a principle of rationality that is of great importance in 

science (and also in everyday reasoning). 

 Principle 2-1: Occam’s razor [William of Occam (1288-

1347)] 

 Entities should not be multiplied without necessity. 

 »Entia non sunt multiplicanda sine necessitate.« 

By consequence there have to be strong reasons for the introduction of 

new theoretical constructs. In fact there was an influential philosophi-

cal tradition that tried to ban theoretical constructs altogether from 

science. Within psychology, this tradition was associated with the 

label behaviorism. However, finally, it became obvious that a mature 

science cannot exist without theoretical entities, and that they cannot 

be reduced to observed quantities. 

The main function of theoretical constructs consists in providing ex-

planations of empirical phenomena. Theoretical constructs are especi-

ally important in the following two contexts: (a) The explanation of 

seemingly divergent observations, and (b) the protection of existing 

well-confirmed theories. However, one of the most important functi-

ons of theoretical constructs is cognitive in nature: It enables scientists 

to draw conclusions and to make new assumptions. 

Let us consider these three functions of theoretical constructs in great-

er detail. 

2.1.1 Theoretical constructs and the explanation of divergent 

observations 

Great achievements in science are associated with the detection of a 

common mechanism that enables an explanation of seemingly diver-

gent observations. Prototypical cases of this sort of unification are 

Isaac Newton’s (1643-1727) theory of the gravitational force or James 

Clerk Maxwell’s (1831-1879) theory of the electromagnetic field. 
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The theoretical construct of (gravitational) force enabled Newton to 

explain Galilei’s (1564-1642) laws of free fall as well as Kepler’s 

(1571-1630) laws of the movements of the planets. In fact, Newton’s 

dynamical theory was able to explain the movement of physical bodies 

in general. At the heart of Newton’s theory we find the theoretical 

construct of force acting upon physical bodies. The assumption of such 

a force together with the equations quantifying its effects enable the 

prediction of the movement of physical bodies under different conditi-

ons. 

Similarly, Maxwell’s assumption (and mathematical description) of an 

electromagnetic field and the field equations enabled him to explain 

and describe all sorts of magnetic and electric phenomena discovered 

by Michael Faraday (1791-1867) and others, like the phenomenon of 

electromagnetic induction. 

Thus, the introduction of theoretical constructs and the associated me-

chanism and relationships (usually represented by (differential) equati-

ons) enable a unified and parsimonious explanation of various seem-

ingly divergent phenomena. One important aspect of theoretical con-

structs consists in the fact that they enable the prediction of new 

phenomena. For example, Maxwell’s theory of the electromagnetic 

field predicted the existence of electromagnetic waves that have been 

discovered only years later by Heinrich Hertz (1857-1894). Due to 

these characteristics of latent constructs (parsimonious unified expla-

nation and the prediction of new phenomena) theoretical constructs 

have been postulated in the face of Occam’s razor. 

Let us now take a look at the second important reason for postulating 

theoretical constructs. 

2.1.2 Theoretical constructs and the protection of existing the-

ories 

A second situation provoking the postulation of theoretical constructs 

is given if a newly detected phenomenon seemingly contradicts a well-

established theory. A classic example of this sort of situation was the 

postulation of the existence of the Neutrino by Wolfgang Pauli (1900-

1958) in the year 1933. The reason for the introduction of this particle 

consisted in saving the well-established law of the conservation of en-

ergy that was seemingly violated by results concerning the radioactive 

beta decay. Independent evidence concerning the existence of Neutri-

nos was provided in 1956, 23 years after its postulation. 

Let us now turn to the cognitive function of theoretical constructs. 

2.1.3 On the cognitive function of theoretical constructs 

If a theory has been completely formalized in terms of mathematical 

equations the theoretical constructs function as variables (or place-

holders) within these equations. Their meaning is no longer required 
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for making precise predictions. Thus it is completely irrelevant, with 

respect to prediction, whether a theoretical construct is denoted by the 

term force or simply be the variable name x. In fact the predictive 

power of theoretical construct is contained in its relations to other con-

structs as well as to observed phenomena. Even if these relations are 

only qualitative in nature allowing only for categorical or ordinal 

predictions, the theoretical construct itself is not relevant for the pre-

dictions. Accordingly, in well-developed sciences, the theoretical con-

structs seem to lose their significance as soon as the relations to other 

constructs and empirical phenomena have been specified precisely. 

However, theoretical constructs serve an important function as a vehi-

cle for promoting new ideas and theories. In mature sciences, scientists 

are thinking and theorizing in terms of theoretical constructs. They 

communicate, draw conclusions, and use analogical reasoning (and 

perhaps other sorts of inductive reasoning) in terms of the content of 

the theoretical constructs. This sort of reasoning results in new theories 

and new applications of existing theories thus promoting science (see, 

for example, Dunbar, 1987). The density of the (nomological) network 

of theoretical constructs as well as the precision of the specified relati-

onships may be important for the successful development of new 

ideas. 

 Comment 2-1: Density and precision of the nomological 

networks and the restrictions of theories  

 

The greater the density of the network of theoretical con-

structs and the higher the precision of the specification of the 

relationships between constructs the strong the mutual restric-

tion of theories from different branches. 

Thus, in a BBC talk on the philosophy of science the phi-

losopher of science, Hillary Putnam, compares science with a 

jigsaw puzzle where different pieces have to fit together (cf. 

https://www.youtube.com/watch?v=kH785oawwkk). 

The importance of the semantic content and interpretation of theoretic-

cal constructs, respectively, is also evidenced by the fact that theories 

which cannot be given a consistent interpretation, as it is the case with 

Quantum theory, are experienced as not completely satisfactory. This 

is true despite of the fact that the theory is extremely successful in 

making (new) predictions. 

To summarize, useful theoretical constructs have three valuable functi-

ons: First, they lie at the heart of unifying theories that provide a parsi-

monious explanation of a great variety of empirical phenomena, and 

the prediction of new phenomena. Second, they enable the protection 

of well-established theories in the face of new refuting empirical evi-

dence. Finally, they perform an important cognitive function enabling 

researchers to communicate and to draw inferences. 

https://www.youtube.com/watch?v=kH785oawwkk
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Let us now take a look on the function of theoretical constructs in 

psychology. 

2.2 Theoretical Constructs in Psychology 

Theoretical constructs are found in everyday as well as in scientific 

psychology. In both cases they have similar functions as in the »hard« 

sciences: Unified explanation, prediction, and communication. Here is 

a preliminary definition of the concept: 

 Concept 2-1: Psychological constructs: 

 Psychological constructs are mental structures and processes 

that cannot be observed directly. They are postulated in order 

to provide a parsimonious explanation of observed behavior. 

 Cf. Principle 2-2 (page 14) for a detailed exposition of the 

concept of theoretical constructs in scientific psychology. 

Let us have a look on some examples of theoretical constructs of folk 

and of scientific psychology. 

 
Ex. 2-1: Psychological constructs used in folk and scientific 

psychology 

 
Theoretical constructs used in everyday psychology refer to 

internal (mental) states and dispositions of traits, e.g.: 

 
Anger, pleasure, depressiveness, frustration, cleverness, am-

orousness, aggressiveness, anxiousness, pain, memory etc. 

 

Some of these constructs can be found in scientific psycho-

logy, too. In addition, scientific psychology has postulated a 

number of new and more sophisticated constructs, e.g.: 

 

Fluid Intelligence, working memory, procedural memory, se-

mantic network, judgmental heuristics, cognitive dissonance, 

executive functions, etc. 

 

Some of these scientific constructs, like fluid intelligence or 

procedural memory, are developments of constructs of folk 

psychology. Others, like semantic networks, judgmental heu-

ristics do not possess a counterpart in everyday psychology. 

Obviously, theoretical constructs serve a similar function in everyday 

and in scientific psychology as in the natural science: providing parsi-

monious explanations of diverse empirical phenomena and predicting 

future events. In the present case the empirical phenomena consist in 

peoples’ overt behavior. Personal traits and/or internal states are used 

for accounting this behavior. 

The shortcomings of folk psychology consist in the fact that its predic-

tions are, in many cases, either imprecise or not correct. In fact, every-

day psychology is well apt to provide post-hoc explanation of behavior 

thus delivering a feeling of understanding and control. However, the 
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theory usually fails to provide precise predictions of human behavior 

under specific conditions. 

 
Ex. 2-2:Wrong predictions of everyday psychology concern-

ing the outcome of the Milgram experiment 

 

Previous to his experiments Milgram asked a number of psy-

chiatrists to rate the percentage of subjects who would apply 

the maximum dosage of shock. The estimates were located 

around 1% (the observed percentage was about 65%). 

There are two main reasons for these shortcomings of everyday psy-

chology: 

1. The constructs are pseudo-constructs (cf. below, Section 2.3). 

2. The network of relationships involving constructs and observed 

behavior has not been specified correctly or it has not been speci-

fied precisely enough to enable predictions, i.e. theories and psy-

chological laws endorsed by lay persons are frequently too impre-

cise and not correct, respectively. 

In response to the shortcomings of everyday psychology, scientific 

psychology tries to develop existing constructs further by refining 

them (i.e. exploring various facets of these constructs), and by em-

bedding them into a dense and precise network of (possible new) latent 

constructs (cf. Comment 2-2 on p.19). Ideally, this should result in 

formal models that enable precise prediction of behavior. Most psy-

chometric as well as many cognitive models are parametric statistical 

models and thus formal models that enable precise predicttions (cf. 

Chapter 3). 

Similar to theoretical concepts in physics a new theoretical concept in 

psychology gains plausibility if it permits the prediction of new surpri-

sing phenomena. 

 
Ex. 2-3:Cognitive dissonance and the prediction of a surpris-

ing behavior 

 

The theory of cognitive dissonance assumes that people try to 

keep their beliefs, thoughts, and other pieces of knowledge 

consistent. Otherwise they experience a sort of cognitive 

tension or cognitive dissonance. This tension is experienced 

as inconvenient, specifically if the beliefs are closely related 

to the conception of the self. By consequence people try to 

reduce the cognitive dissonance. 
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Peoples’ tendency to reduce cognitive dissonance leads to 

surprising behavior. For example, in an experiment of Festin-

ger and Carlsmith (1959) participants were asked to announce 

a perfectly stupid and boring experimental task to other sub-

jects as being interesting. Those participants who received no 

payments for their wrong report assessed the experiment as 

being more interesting than those subjects that received a 

payment. 

 

This can be explained by participants’ attempts to reduce 

their cognitive dissonance between their honest self and the 

fact that they betrayed their colleagues without receiving any 

reimbursement. By changing their belief that the experiment 

was not that dull they were able to reduce their cognitive dis-

sonance. 

 

Surprising behavior due to peoples’ attempts to reduce cogni-

tive dissonance was observed in different contexts (see, e.g., 

Aronson, Wilson & Akert, 2010). 

One important issue concerns the differentiation between constructs 

and pseudo-construct. We now turn to this problem. 

2.3 On the Nature of Theoretical Constructs and the Problem of 

Pseudo-Constructs 

The scientific realism debate in the philosophy of science contrasts 

two different conceptions concerning the nature of theoretical con-

structs. 

 Concept 2-2: Realistic vs. instrumentalistic conception of 

theoretical constructs: 

 According to the realistic view theoretical constructs refer to 

existing entities that represent the »deep structure« of the 

observed phenomena. 

 According to the instrumentalistic view constructs are pure 

inventions that need not have any counterparts in reality. 

Their function consists in providing precise and correct pre-

diction and explanation of empirical phenomena. 

Intuitively, the realistic conception of theoretical constructs seems to 

be more convincing. However, as noted by the philosopher of science 

Van Fraassen (1980), in practice the capacity of a theory to predict 

new and surprising phenomena is one of the most important features of 

a successful theory (see also Lakatos, 1978). By contrast, whether a 

theory can be given a consistent interpretation is of secondary impor-

tance only. The best example is modern quantum theory that was 

extremely successful in providing precise predictions. However, up to 

these days, no consistent interpretation of quantum theory has been 

provided. Note also that the existence of entities underlying theoretical 
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constructs cannot be proved since correct predictions of a theory do 

not necessarily imply that the theory is correct and, thus, the under-

lying constructs really refer to existing entities. 

Within the realm of psychology, the realistic position is the dominant 

one (Borsboom, Mellenbergh, & Van Heerden, 2003). This raises the 

following question: What are the entities psychological theoretical 

constructs are referring to (see also Concept 2-1 on page 11). 

 Principle 2-2: Scientific psychological constructs and functi-

onal modules: 

 

Psychological constructs do not refer to neurological struc-

tures. Rather, they are conceptualized as functional entities or 

processes, i.e. processing modules that perform certain func-

tions in order to solve specific information processing pro-

blems. 

 
These functional models are the building blocks for explain-

ing observed behavior 

 

The functional modules may be composed of more elementary 

functional modules resulting in a hierarchy of psychological 

processes and modules that are based on elementary psycholo-

gical processes that are implemented directly within the brain. 

The elementary psychological processes make up the functio-

nal architecture (Pylyshyn, 1984). 

 

Functional modules should not be confused with brain proces-

ses. In fact complex functional modules may be distributed 

over different regions of the brain 

The following example illustrates the case. 

 Bsp.2-1: The theoretical construct of working memory: 

 

The working memory is conceived of as a cognitive (func-

tional) unit that enables the temporal maintenance and mani-

pulation of information under interference (see e.g. Miyake & 

Shah, 1999). 

 

The working memory consists of various components: execu-

tive control and memory puffers for different types of infor-

mation: the phonological loop, the visual sketchpad, as well 

as an episodic puffer (Baddeley, 2000). 

 
The working memory is not located in a certain region of the 

brain. Rather subunits are distributed over different locations. 

The existence of theories involving theoretical constructs raises an im-

portant issue: 

 

Issue 2-1: 

How can we discriminate between significant theoreti-

cal constructs and nonsensical pseudo-constructs? 
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The history of the natural sciences reveals that a number of constructs 

have been postulated that turned out later to be nonsensical. The most 

famous example is the luminiferous aether that was assumed as the 

medium within which electromagnetic waves spread out. Another ex-

ample is the hypothetical phlogiston that was assumed to dissipate in 

the curse of burning. In Biology, vital forces specific to living things 

has been postulated. 

Modern physics postulates theoretical constructs whose status is, at 

present, unclear. Well-known examples are dark matter and dark ener-

gy. The same was true for the Higgs Boson whose existence has been 

confirmed on July 2012 by the Large Hadron Collider at CERN. 

The history of psychology is full of pseudo constructs. An early exam-

ple provides the Greek concept of the four fundamental personality 

types: sanguine, choleric, melancholic, and phlegmatic. It has been 

assumed that these types are associated with the prevalence of specific 

body fluids: blood, yellow bile, black bile, and phlegm. 

Another source of pseudo constructs provides psychoanalysis, e.g. the 

concept of different stages of development: oral, anal and oedipal. 

Similarly, the dynamic theory of the human personality with different 

forces acting in opposite directions may be conceived of as a pseudo 

construct. 

A more modern example of questionable constructs may be found in 

intelligence research. 

 Ex. 2-4: Possible pseudo constructs in intelligence research: 

 
The following intelligence constructs are assumed to be que-

stionable (see, e.g., Flynn, 2009; Rost, 2013): 

  Multiple intelligences 
  Emotional intelligence 

  Spiritual intelligence 

Let us now return to Issue 2-1 and the problem how one can discri-

minate between useful psychological constructs and pseudo constructs. 

Previously to considering useful criteria of discrimination it is useful 

to examine how the difference between useful constructs and pseudo 

constructs is conceptualized within the realistic and instrumentalistic 

position: 

 For a proponent of a realistic position, a theoretical construct is 

useful if it refers to an existing entity otherwise it has to be con-

ceived of as a pseudo construct. 

 For a proponent of an instrumentalistic view, a theoretical con-

struct is useful if it enables parsimonious explanations of existing 

and the prediction of new surprising phenomena. 

The conception of the realistic view does not provide a workable cri-

terion since there is no way to decide definitively whether an entity a 

construct refers to really exists. By contrast, the conception related to 
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the instrumentalistic view is more fertile for finding a criterion of dis-

crimination. 

 Principle 2-3:  Criteria for assessing the usefulness of theore-

tical constructs 

 

Theoretical constructs are useful if they are associated with 

theories that enable the parsimonious explanation and the pre-

diction of empirical phenomena. The degree of the usefulness 

depends on the following characteristics: 

 
1. The breadth of the range of application, and the degree of 

parsimony of the explanation, respectively; 

 2. The degree of surprise of correct predictions; 

 
3. The precision of the prediction which relates to the diffi-

culty of the possibility of refuting the theory; 

 

4. The degree of uniqueness of an explanation, i.e. there do 

not exist other well established constructs and theories 

that are able to explain or predict the phenomena in que-

stion. 

 

5. Constructs cut the nature at its joints. This means they 

refer to a original realm (realistic position) or the allow 

for parsimonious and convenient explanations as well as 

for precise predictions of a specific set of phenomena (in-

strumentalistic view). By contrast pseudo-constructs cut 

across different realms. 

 

In general, theoretical constructs that are embedded in a dense 

web of theoretical constructs with precisely specified relations 

between theoretical constructs and observations are the candi-

dates of useful constructs. 

 

By contrast, pseudo-constructs are irrelevant for the explana-

tion of empirical phenomena since these are explained in a 

superior way by theories that are associated with other con-

structs. In addition, these constructs are not or only weakly 

linked to other generally accepted theoretical constructs. 

The specified criteria are not sufficient for establishing the usefulness 

of theoretical constructs. However, they provide a good indication that 

a scientific construct may be useful. It is always possible that with the 

development of a new improved theory a construct considered as use-

ful may turn out to be a pseudo-construct. 

 Ex. 2-5: Identification of pseudo-constructs in psychology: 

 

1. The main problem concerning multiple intelligences con-

sists in the fact that they refer to abilities (like musical 

abilities or motor abilities) that are not part of the intel-

lectual capabilities that are considered as part of intelli-

gence (Flynn, 2009, Rost, 2013). 
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Thus, these concepts do not cut nature at ist joints. They 

refer to quite divergent phenomena that do not enable for 

parsimonious explanations. 

 

The same argument applies to other intelligence concepts 

like emotional or spiritual intelligence. These are simple 

examples of the inflationary misuse of the intelligence 

concept. 

 

2. Modern social psychology, specifically the theory of au-

tomatisms (cf. Bargh, 1994, 1997), provides an alternati-

ve and more stringent explanation to phenomena account-

ed for by Freud‘s dynamic unconsciousness. 

It has been argued above that the plausibility and usefulness of a the-

oretical construct increase if it is part of a theory that enables the uni-

fication of partial theories from different domains thus permitting the 

parsimonious explanation of a number of phenomena (like Newton’s 

concept of force or Maxwell’s electromagnetic field). This raises the 

issue of the existence of similar concepts in psychology enabling the 

explanation of phenomena from different domains. 

It is fair to say that, contrary to physics, psychology does not dispose 

of high level unified theories. In fact psychology is populated with 

mini-theories associated with different domains (cf. the complaint of 

Cronbach, 1957). By the beginning of the nineties a sort of unification 

has been achieved in the realm of intelligence research. 

 Ex. 2-6: Fluid intelligence und working memory capacity: 

 

In a detailed and sophisticated theoretical analysis Carpenter, 

Just, and Shell (1990) elucidated that working memory capa-

city is an important factor in the successful solution of Ra-

ven’s progressive matrices. 

 

Subsequently, numerous empirical studies revealed a close 

relationship between the theoretical construct of fluid intelli-

gence (Ackerman, Beier, & Boyle, 2005; Beier & Ackerman, 

2005; Kane, Hambrick & Conway, 2005; Oberauer, Schulze, 

Wilhelm, & Süss, 2005). 

 

This finding may be conceived of as a successful unification 

of results from two different domains (the correlational and 

the experimental domain). 

 

Comment: 

There have been previous attempts to bring the concept of 

general intelligence into alignment with results from experi-

mental psychology, for example: 

 
 General intelligence as the ability to solve complex pro-

blems (Dörner, 1983). 
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 General intelligence and reaction times for elementary 

decision tasks (Jensen, 1978). 

 
These attempts were less successful since the observed rela-

tionships were not particularly strong. 

As noted, theoretical constructs that are associated with theories 

permitting the prediction of a great variety of observations are of great 

significance. In psychology theoretical constructs are sometimes justi-

fied by the fact that they enable the prediction of crucial life events. 

 
Ex. 2-7: Theoretical constructs and the prediction of crucial 

life events: 

 

1. The construct of general intelligence turned out to be a 

predictor of success in various domains of life (Herrnstein 

& Murray, 1996), for example: 

  Success in school, academic studies, and profession; 
  Health status and life span; 
  Probability of unwanted pregnancy; 
  Probability of successes of psychotherapy. 

 

2. Various personality traits, like low level of neuroticism, 

and high levels of agreeableness or conscientiousness are 

associated with satisfaction in the partnership of the part-

ners (Dyrenforth, Kashy, Donnellan & Lucas, 2010). 

 

3. The concept of will power (self-control) exhibits a relati-

onship (positive or negative) with the following relevant 

aspects of life (Mischel, 2015): 

  Drug abuse; 

  Financial problems; 

 
 Obesity, high blood pressure, high level of cholester-

ine; 

  Antisocial and criminal behavior; 

  Aggression, impulsivity, hyperactivity; 

  Power of concentration; 

  Persistence in the prosecution of objectives. 

These relationships are of practical interest. However, they do not ne-

cessarily indicate the existence of a significant theoretical construct. 

Specifically, in most cases simple correlations between measures of 

the constructs and the different life events are computed without speci-

fying in detail the network of involved constructs and the relation of 

the latter to observed measures. 
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 Comment 2-2: Theoretical constructs and construct vali-

dity: 

 

Lee Cronbach and Paul Meehl introduced the concept of con-

struct validity (Cronbach & Meehl, 1955). They make clear 

that the evaluation of a theoretical construct comprises a spe-

cification of the measures used but also a determination of the 

nomological network of constructs their relationship to the ob-

served measures as well as possible relationships between me-

asures. 

 

Due to a lack of understanding, the concept as well as the as-

sociated ideas received little resonance within the scientific 

community (Kane, 2001). Even today the concept is frequent-

ly used erroneously (cf. the discussion in Chapter 4.5). 

Let us summarize the basic considerations concerning theoretical con-

structs and the associated problems: 

1. Theoretical constructs are at the heart of theories that enable one to 

explain and predict empirical phenomena. The theories describe 

relationships between theoretical constructs and between constructs 

and observational entities. 

2. Theoretical constructs have an important cognitive function: Re-

searchers communicate, think, and reason in terms of theoretical 

constructs. 

3. A theoretical construct is the more versatile the more relationships 

it enters with other constructs and empirical phenomena, i.e. the 

denser the nomological network the construct is involved. As a re-

sult, more empirical phenomena can be explained. 

4. Another characteristic of a useful theoretical construct consist in its 

potential to predict new surprising empirical phenomena. 

5. An important scientific progress consists in unification, i.e. if the-

oretical constructs from different domains of the discipline turn out 

to be the same. Unification is associated with a connection of diffe-

rent nomological networks. 

6. The precision of the characterization of a theoretical construct as 

well as the precision of the specification of its relationship are cru-

cial as well since the more precise these specifications the more 

exact the predictions based on the theoretical construct. 

7. The quality of the nomological network, i.e. the number and pre-

cision of the relationships of the constructs to other constructs and 

to empirical phenomena as well as the resulting breadth and precisi-

on of explanations are a good indicator of the presence of a signifi-

cant theoretical construct compared to a pseudo-construct. 

8. The criterion separating constructs from pseudo-constructs is not a 

strict one. In fact, no such criterion does exist since a theory can 

always turn out to be wrong and may be replaced by a new and 
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better one. As a consequence, theoretical constructs associated with 

the old theory may turn out to be wrong. 

This ends our discussion of theoretical constructs that play a crucial 

role in science in general and specifically in modern psychometrics. 

Previously to discussing specific models, we next consider the general 

structure of a psychometric model. 
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3. The Structure of Psychometric Models 

The present chapter presents the general structure that is common to 

most psychometric models. The psychometric model is at the center of 

modern psychometrics since each of the tasks concerning psychome-

trics is related to a the psychometric model. Previously to explicating 

of the model structure of the general psychometric model it is useful to 

first delineate the basic components of the practice of (modern) psy-

chometrics. 

3.1 On the Practice of Psychometrics 

A psychometric analysis comprises the following components: 

1. Construction of a measurement model that represents the important 

factors exerting an influence on the measure, and estimating the pa-

rameters of the models by fitting the model to data. 

2. Test of the measurement model; 

3. Evaluation of the characteristics of the test items used for measure-

ing psychological constructs; 

4. Prediction of latent construct scores; 

5. Comparison of different groups. 

By consequence, the presentation of classical test theory in Chapter 4 

as well as the exposition of probabilitistic test theory in Chapter 5 

comprises these five components of the practice of modern psychome-

trics. Let us take a short look at these 5 aspects of Psychometrics: 

3.1.1 Construction of a Measurement Model and Estimation of 

Model Parameters 

A formal definition of the concept of a measument model is given be-

low in Concept 4-12, on page 81. For the moment it suffices to know 

that a measurement model (test model , psychometric model) models 

all relevant factors influencing the test and measurement, respectively. 

The model contains free parameters (cf. Notation 3-1, on p. 27). They 

represent predominantly the following three aspects: 

1. Properties of the distribution of the latent constructs; 

2. The strength of the influences of different factors on the latent vari-

ables; 

3. Characteristics of test items; 

The parameters are estimated from the data. The esrtimation procedure 

finds those parameter values that best describe the given data. 

3.1.2 Evaluation of the Measurement Model 

The evaluation of the measurement model comprises three aspects: 



 

 

Chapter 3: The Structure of Psychometrics Models 22 

 

 

 

 

1. Assessment regarding the content of the model; 

2. Evaluation of how well the model explains the data; 

3. Consideration of model variants. 

The evalution of the model with respect to the contents is concerned 

with two issues: First, is the model in accordance with existing accep-

ted theories? For example, does the model represent correctly the rela-

tions between latent constructs? Second, are the values of estimated 

parameters plausible, i.e. do they conform to current knowledge? 

The evaluation of how well the model fits the data is ideally performed 

by means of statistical testing. However, this requires precise distribu-

tional assumptions. Another way consists in performing cross-valida-

tion: The full dataset is split into different subsets and the model is fit 

to one of the subsets with model parameters being estimated. Then the 

model is used to predict the other data sets using the estimated para-

meters. In case of large deviation between data and model predicitons 

one may conclude that the model is empirically not adequate. The me-

thod of cross validation requires a big data set that can be split into 

smaller subsets. 

It is also useful to consider variants of the basic models. Specifically, 

it is sensible to take into account simpler model exist that might ex-

plain the data equally well. 

If the model is regarded as sufficiently acceptable then the next steps 

may be performed. Otherwise, a new model has to be generated and 

tested 

3.1.3 Evaluation of Item and Test Characteristics 

The most important characteristic of test items is concerned with the 

capability of an item to measure the latent constructs it is intended to 

measure. In classical test theory an important criterion for evaluating 

the quality concerns the reliability of a test item or of the sum of test 

items. In case of probabilistic test theory the information function of 

test items and tests provides a similar function. 

In case of probabilistic test theory the range of latent scores for which 

an item provides the most information constitutes a second important 

characteristic. Usually a test items provides information about a latent 

construct only within a restricted range of latent construct scores. For 

example, an item may provide information only for high ability parti-

cipants. Thus, it enables to discriminate between members of a high 

ability subgroup. For low ability subjects the item may not discrimina-

te since no member of this sub-population may be able to provide a 

correct answer. By contrast, an item that enables to discriminate bet-

ween low ability subjects may provide no information in case of high 

ability participants since the item is too simple and thus answered 

correctly by each member of this subgroup. With adaptive testing 

items are selected that provide the greatest information according to 
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the latent construct scores predicted on the basis of the results from 

items applied so far. 

3.1.4 Prediction of Latent Construct Scores 

The process of estimating the psychometric model results in estimation 

of the parameters characterizing the items and the parameters that cha-

racterize the distribution of the latent scores. However, the estimation 

process does not provide information about the value of a specific par-

ticipant on the latent scores given her test scores. This value has to be 

predicted after the process of estimation using the estimated parame-

ters of the model. (On the difference between the estimation of model 

parameters and the prediction of latent scores cf. Notation 4-10, on 

p.145). 

3.1.5 Comparison of Different Groups 

One important objective in the measurement of mental abilities con-

cerns the issue of whether different groups reveal different distributi-

ons of the latent construct scores. Conclusions about differences bet-

ween distributions of latent scores between different populations re-

quires certain presuppositions.  

Measurement invariance and Differential item functioning (DIF). 

3.2 The General Psychometric Model 

Modern psychometric models consist of three main components: 

1. Latent constructs and their relationships, 

2. Observed measures, test scores etc., 

3. A response model that maps values of latent constructs on values of 

observed measures. 

Figure 3-1 exhibits the basic structure of a psychometric model. The 

specific models, discussed below, are but specific cases of the general 

model. 
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Figure 3-1: Basic structure of a psychometric model. 

The model comprises the following components:  

1. Latent variables are represented by circles and denoted by italic 

Greek letters. In the model of Figure 3-1 there are three types of la-

tent variables: 

(i) Variables representing latent mental abilities or characteristics 

are denoted by the letters 1 2, , , p   . 

(ii) Variables called hidden response processes are denoted by the 

letters 1 2, , , n   . 

(iii) Variables denoting residual (or error) terms are symbolized by 

the letters 1 2, , , n   . 

Psychometric models may comprise other latent variables repre-

senting other variables exerting an influence on the test scores, like 

situational influences, or influences specific to the method used. 

2. Observed measures are represented by rectangles and denoted by 

Latin letters in italic: 1 2, , , nY Y Y . 

3. Constants are represented by triangles with the value of the constant 

within the triangle. 

4. The double-arrowed arcs between the latent ability constructs repre-

sent covariances. The absence of an arrow indicates that there exists 

no relationship between the latent variables. 

5. Arrows represent linear causal relationships between two variables. 

6. The red curves represent response functions that transform values 

of response processes to observed responses. 
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7. The parameters of the model are denoted by Greek letters (not in 

italic). The parameters can be divided into the following classes: 

(i) Variance parameters, 2 2 2

1 2, , , p   , as well as covariance pa-

rameter, 11 12 1 23 24 2 1,, , , , , , , , ,p p p p       , of the latent 

ability constructs. 

(ii) Variance parameters of the error terms: 
2 2 2

1 2, , , n    

(iii) Mean parameters 1 2, , , p    of the latent ability constructs. 

(iv) Loading coefficients 11 12 1 21 21 2, , , , , , , , ,p p np        may 

be conceived of as linear regression coefficients of the regres-

sion of the response processes j  on the latent mental ability 

constructs i . 

(v) Parameters 1 2, , , n    represent item difficulties (or thresh-

olds). 

(vi) Parameters 1 2, , , n    are discrimination parameters repre-

senting characteristics of the response functions, specifically 

the slopes of the item response functions. 

There are a number of features of the model that should be considered 

carefully: 

1. It is assumed that the latent variables 1 2, , , p    are multivariate 

normally distributed random variables with mean vector and cova-

riance matrix: 
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(Comment: Φ  is symmetric, i.e. the rows and columns are identi-

cal; ij ji     , 1,2, ,i j p . 

The assumption of multivariate normality is a convenient assump-

tion that enables an efficient numerical evaluation of integrals in 

case of non-linear response functions). 

2. The error terms 1 2, , , n    are also assumed to be are multivariate 

normal distributed random variables with mean vector and covari-

ance matrix: 
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Note that in Figure 3-1 no covariance arcs between the error terms 

are shown. This indicates that the covariance between each pair of 

error terms is zero, i.e. 0ij  , for all i, and j with i j . In some of 

the models presented below the restriction of zero correlation bet-

ween error terms will be released. 

3. The hidden response processes may be interpreted as hidden contin-

uous responses to an item. They are linear functions of the latent 

ability variables, the item difficulty and the error terms: 

1 1 2 2 1 1 1j j j j p j j                . 

This equation provides the most general form of the response pro-

cesses. Usually, they are much simpler. For example, in case of the 

Rasch model the response processes are given by: 

j j   . 

4. The form of the item response functions depends on the framework 

used: 

(i) In case of the item response version of the classical test theory 

the item response functions are identical functions. Consequen-

tly the hidden response j  corresponds to the observed respon-

se jY . 

(ii) In case of probabilistic response models the response functions 

are functions that map the response processes j  into the range 

[0, 1]. The commonly employed response functions are the lo-

gistic (distribution) function: 

 
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exp

1 exp

j j
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j
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and the standard normal distribution function (normal ogive): 
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Both types of response functions exhibit a sigmoidal form as 

shown by the red curve and blue curves in Figure 3-2. Due to 

the fact that the logistic distribution function is easier to com-

pute than the normal distribution function, the former has been 

used in most applications. As also exhibited in Figure 3-2 the 

logistic distribution function with discrimination parameter 

1.7  , 

 
 

exp 1.7

1 exp 1.7

j

j

j

Y



 

, 
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results in a response curve (also called item characteristic cur-

ve) that is nearly identical to that of the normal distribution 

function (cf. the green dashed curve in Figure 3-2). In fact, it 

can be shown that the absolute difference between both curves 

is smaller than 0.01 over the whole range of possible values (cf. 

Birnbaum, 1968), i.e.: 

   1.7 0.01j j     , 

and 

  0.01
1.7

j

j

 
    
 

, 

where      exp 1 expj j j
      
 

 denotes the logistic 

(distribution) function. 

(iii) For the item response model of the classical test theory the re-

sponse function is the identical functions, i.e., j jY . This 

may be interpreted as the absence of a response function. 

(iv) In a subsequent chapter (cf. Chapter xxxx) more complex item 

response functions that enable the modeling of ordered respon-

ses will be discussed. 

 Notation 3-1: Variables vs. parameters 

 
Variables have to be strictly differentiated from parameters, 

even if both may be denoted by Greek letters: 

  Variables are quantities that can take on different values. 

 

 Parameters are constants whose values are estimated from 

the data. They are used to characterize different aspects of 

the measurement model. 

 

The difference between variables and parameters is reflected 

by a different notation: Variables are set in italic font whereas 

parameters and constants are not. 
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Figure 3-2: Item response functions of probabilistic item response 

models: (a) red curve: logistic distribution function; (b) 

blue curve: standard normal distribution function; (c) 

green dashed curve: logistic distribution function with 

discrimination parameter 1.7  . 

Unfortunately, there exists a problem concerning the uniqueness of the 

interpretation of the nature of the response processes. This will be 

discussed next. 

3.3 Probabilistic vs. Deterministic Thresholds 

The item response functions may be interpreted as representing proba-

bilistic decision functions that are based on probabilistic thresholds: 

The participant selects response category 1c  if the hidden re-

sponse j  of that person surpasses a certain threshold j , other-

wise she selects response category 2c .  

In case of a probabilistic threshold, the latter is itself a random vari-

able: 

j j j   , 

with j  symbolizing a parameter, and j  follows a certain distribu-

tion. In case of the logistic response function the error term j  con-

forms to a standard logistic distribution and in case of the normal re-

sponse function the error term conforms to a standard normal distri-

bution. Assuming standard normally distributed threshold noise (i.e. 
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j  follows a standard normal distribution), the probability of response 

category 1c  is given by: 

   

 

 

j j j j j

j j j

j j

P P

P

    

   

   

   

 



. 

Similarly, in case of a logistic distributed threshold noise, we get: 

   

 
 

exp

1 exp

j j j j

j j

j j

P    

 


  

   





, 

where the symbol      exp 1 expx x x      represents the logistic 

distribution function, with mean zero and standard deviation 3 . 

Concerning the alternative interpretation, one might assume a fixed, 

deterministic threshold: 

j j   , 

and locate the origin of the probabilistic response process in a noisy 

hidden response: 

j j j    . 

This results in the same probability of selecting response category 1c : 

   

 

 

 

1

j j j j j

j j j

j j

j j

P P

P

    

   

   

  

   

 



 

. 

The last line results from the previous one since the standard normal 

distribution is symmetric about 0, resulting in the equality: 

   1 x x   . 

The same is true for the standard logistic distribution (cf. Figure 3-2). 

Thus a psychometric model with probabilistic response function does 

not allow for a unique interpretation with respect to the noise associ-

ated with the response process. The later can either be located in the 

hidden response process or in the threshold itself. 

To summarize the discussion about the structure of psychometric mo-

dels: A psychometric model specifies the latent variables and their re-

lations as well as response functions that map the latent response pro-

cesses to observed responses. The model predicts the distribution of 

the observed responses and it comprises free parameter. Due to these 
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features psychometric models are members of the class of parametric 

statistical models. 

The psychometric models, to be discussed in the following, are special 

cases of the model of Figure 3-1 that usually do not contain all the 

components of the general model. 

The general model could be extended further by including measured or 

unmeasured (latent) variables that exert a direct influence on the latent 

ability variables, the latent response processes, and/or the observed 

variables. It is also possible to model direct influences between ob-

served measures. However, these possible extensions will not be con-

sidered in the subsequent presentation of specific models. 

3.4 Comparing Psychometric and Cognitive Models 

In the following we compare psychometric models with cognitive mo-

dels that are also parametric statistical models. It turns out that im-

portant cognitive models are similar in structure to psychometric mo-

dels despite the fact that cognitive and psychometric model builders 

are disjoint groups that attend different conferences, publish in 

different journals, and, do not often cite each other (Batchelder, 2010). 

The two groups represent the two disciplines alluded to by Cronbach 

(1957). There are exceptions, however: Darrell Bock who designed the 

nominal item response model claimed that he was inspired by the 

Bradly-Terry-Luce model, presented below (cf. Thissen, Cai & Bock, 

2010). 

Before we discuss the basic differences between both types of models 

two well-known cognitive models, the already mentioned Bradly-

Terry-Luce model and the Gaussian signal detection model are 

presented. Both types of models comprise a set of latent constructs that 

are mapped by means of a response function on an observed response. 

3.4.1 Bradley-Terry-Luce Model and Thurstone’s Model VThe 

model can be used to explain choice probabilities of pair comparisons 

where a participant exhibits her preference by choosing one alternative 

out of a pair of alternatives. For example, a test might consist of 

different soft drinks (or types of wine, cheese, chocolate, etc.). The 

participant gets two samples of drinks and has to choose the one she 

prefers. 

The basic idea underlying the model is the following: There exists a 

latent continuous dimension on which the different drinks (or, in gene-

ral, the different objects to be evaluated) take on different positions. 

This latent dimension may be interpreted as a latent preference dimen-

sion with the different objects to be evaluated taking different scale 

values. 
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Drink B Drink A Drink C Drink D Drink E 

1 2 3 4 5 
 

 

 

 

Figure 3-3: Objects located on a latent preference dimension that 

constitutes the basis for the decisions. Latent scale val-

ues (or latent scores) are represented by the symbols 

1-5. 

Figure 3-3 depicts the situation in case of 5 soft drinks. Each drink 

takes a specific value on the latent scales. These values are denoted by 

the symbols 1 2 5, , ,   . The greater the latent scale value of a drink 

the greater the preference for this drink. 

The logistic distribution function (cf. Figure 3-2) maps the difference 

between two scale values, representing the preferences for the two 

drinks to be compared into the probability of choosing a drink: 

 
 

exp

1 exp

i j

ij

i j

P
 


  

, 

where the symbol ijP  denotes the probability that drink i is chosen in 

case of drink i and j being presented. The greater the difference bet-

ween two scale values, i  and j   i j   , the greater ijP . 

The model can be conceived of as a special case of the general psycho-

metric model shown in Figure 3-1 (cf. Figure 3-4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4: Structure of the Bradley-Terry-Luce model: Latent scores 

are represented by the parameters i and j. The respon-

se function is the logistic function. 
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The hidden response is the difference between the latent scores: 

ij i j  . 

These are mapped by the logistic distribution function on the observed 

responses which are the probabilities ijP  of choosing object i in case of 

object i and j being presented. 

Using as a response function the standard normal distribution function: 

 ij ijP   , 

with the difference between latent scale values as hidden response and 

a discrimination parameter of 1 2  , i.e., 

2

i j

ij

 
  , 

results in Thurstone’s Case V (Thurstone, 1927). In this case the 

model can be given a different Interpretation: The latent scale values 

are the means of latent random variables i  that are independently 

distributed according to a normal distribution with mean i  and 

variance 1.0. 

 ,1i iN  . 

The symbol  indicates that the random variable follows the given 

distribution.  ,1iN   symbolizes a normal distribution with mean i  

and variance 1.0. The fact that i  is a normally distributed random 

variable with mean i  and variance 1.0 can be represented in a slightly 

different way by means of the equation: 

i i i   , 

where, 

 0,1i N . 

Thus, the random component i  conforms to a standard normal distri-

bution. The probability of choosing alternative i over j corresponds to 

the probability that the difference between the value of the random 

variable i  is greater than (or equal to) the value of j : 

 ij i jP P   . 

This probability is equal to the value given by the normal distribution 

function at   2ij i j   , i.e. (cf. Exercise 3-2): 

 
2

i j

i jP
  

   
 

  . 

According to this interpretation, the latent dimension consists of ran-

dom variables that are normally distributed, with mean i  and variance 

equal to 1.0. In this case the threshold is a deterministic one: 
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Choose option , if  and option  otherwise.i ji j   

In case of a logistic distribution function an interpretation as in Thur-

stone’s Case V is not possible since, unlike in care of two normally 

distributed random variables, the difference of two logistically distri-

buted random variables does not conform to a logistic distribution. 

Let us now consider another famous cognitive model used to measure 

cognitive abilities. 

3.4.2 The Gaussian Signal Detection (SDT) Model 

The signal detection (SDT) model is used to measure participants’ abi-

lity to discrimination between different stimulus classes. Usually, only 

two stimulus classes are used. These are called signal vs. signal + 

noise in detection experiments or new vs. old in memory recognition 

experiments, or H0 vs. HA in the context of statistical hypothesis test-

ing. The model makes the following assumptions (cf. Figure 3-5): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5: Main components of the Gaussian SDT model: The x-axis 

constitutes a latent decision axis. The red and green cur-

ves represent the distributions of the subjective strength 

for the two stimulus classes. The blue vertical dashed line 

represents the decision criterion: If a subjective repre-

sentation of a stimulus is located to the right of the line it 

is categorized as »Signal«, »Old « and »HA«, respective-

ly, otherwise the response category »Noise«, »New« or 

»H0« is selected. The red horizontally hatched area re-

presents the probability of a false alarm and the green 

vertically hatched area the probability of a false rejec-

tion. 

1. The item given to the participant is represented on a latent conti-

nuous decision axis. This represents the subjective strength of the 

Decision axis

1 2

HA

Signal Noise

Old

H0

Noise

New

"HA"

"Signal"

"Old"

"H0"

"No Signal"

"New"
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signal in case of a detection experiment, the strength of the memory 

signal in case of a memory experiment or the strength of the evi-

dence in favor of the hypothesis HA, in case of statistical hypothesis 

testing. 

2. For each stimulus class (or hypothesis) i the subjective strengths of 

the individual items conform to a Gaussian (normal) distribution 

with a given mean i  and variance parameter 
2

i  (i = 1, …, n). 

3. To make a decision, the participant sets a decision criterion (or thre-

shold) along the latent dimension. If a subjective strength value is 

located to the right of the criterion the response »Signal«, »Old«, 

and »HA«, respectively, is given. Otherwise the response option 

»Noise«, »New« or »H0« is selected. 

4. The model enables one to compute the probability of hits and false 

alarms (as well as those of misses and correct rejections). These are 

the areas under the normal density curves. Specifically, the red 

horizontally hatched area in Figure 3-5 represents the probability of 

a false alarm and the green vertically hatched area the probability of 

a false rejection. The probability of a hit is one minus the probabi-

lity of a false rejection and the probability of a correct rejection is 

one minus the probability of a false alarm. In Figure 3-5 this corres-

ponds to the area under the green density curve right from the 

criterion and the area left from the criterion under the red curve, re-

spectively. 

Knowing the location of the decision criterion  and the mean and va-

riance of the noise distribution,  2,N N  , as well as of the signal di-

stribution,  2,S S  , the relevant probabilities can be computed 

(Exercise 3-5): 

   

   

   

   

Correct rejection

False alarm 1

False rejection

Hit 1

N

N

N N

N N

S

S

S S

S S

P P Noise Noise

P P Signal Noise

P P Noise Signal

P P Signal Signal

  
   

 

       
       

    

  
   

 

       
       

    

. 

 Notation 3-2:  

 
In diagnostic contexts the probability of hits and correct re-

jections are termed sensitivity and specificity. 
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In the context of statistical hypothesis testing false alarms and 

false rejections are termed Type I and Type II errors (or errors 

of the first and second type) and the associated probabilities 

are denoted by  and . The probability of a hit is called the 

power of the test  1  . 

Obviously, the participant’s ability to discriminate between different 

types of signals depends on the overlap of the density functions repre-

senting the distributions of the subjective signal strengths: The greater 

the overlap between two density curves the lower the ability to discri-

minate between the two types of signals. In the extreme case of total 

overlap the discrimination capability is zero. 

It is important that note that the observed discrimination performance 

depends on the criterion setting. Assuming equal base rates or noise 

and signal trials and equal (positive or negative) payoffs for different 

outcomes the optimal location of the criterion conforms to that point 

on the decision axis, where the two density curves cross. Thus, the dis-

crimination performance is influenced by both the capability to discri-

minate between the stimuli as well as the criterion setting. By conse-

quence, discrimination performance, as measure for example by the 

probability of a correct answer, cannot be used as a measure of discri-

mination ability since it confounds the latter with the decision strategy. 

The SDT model can be used to disentangle the two aspects, thus pro-

viding a process pure measure of participant’s discrimination capabili-

ty, provided that the model represents the processes involved approxi-

mately correct. 

Similar to the Bradley-Terry-Luce model the SDT model can be repre-

sented within our modeling framework of psychometric models (cf. 

Figure 3-1). 

3.4.3 On the Difference between Psychometric and Cognitive 

Models 

The previous discussion of the two cognitive models makes it clear 

that cognitive models have a similar structure as psychometric models. 

In fact, both models can be represented as specific cases of the general 

model of Figure 3-1 (on page. 24). Consequently, the difference bet-

ween psychometric and cognitive models cannot be due to the struc-

ture of the models. 

In order to grasp the difference between psychometric and cognitive 

models it is important to understand the different goals of the two mo-

deling approaches. 

Cognitive modelers are interested in modeling basic mental processes 

and how these are influenced by experimental manipulations. They are 

not (or to a lesser degree) concerned with individual differences within 

experimental conditions. Rather, it is assumed that participants within 

an experimental condition constitute a homogenous population. Con-



 

 

Chapter 3: The Structure of Psychometrics Models 36 

 

 

 

 

𝑃ሺ»𝑆«ȁ𝑁ሻ 


𝑁

 

𝑃ሺ»𝑆«ȁ𝑆ሻ 


𝑆
 

𝑁ሺ𝜇𝑁 , 𝜎𝑁
2ሻ 𝑁ሺ𝜇𝑆, 𝜎𝑆

2ሻ 

sequently, the values of the model parameter within an experimental 

condition are assumed to be (approximately) the same for different 

participants. Differences between participants within the same experi-

mental condition are conceived of as noise that is not analyzed further. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6: Structure of the Gaussian SDT model for two types of sig-

nals (N = noise S = noise + signal): Latent scores are re-

presented are normally distributed random variables. 

The decision process is based on deterministic thresholds 

indicated by the red functions. 

By contrast, psychometric modeling is concerned with the measure-

ment of individual differences and with assessing the degree of infor-

mation that a test item provides for achieving this goal.  

Due to these different the parameters of two types of models refer to 

different entities: In cognitive models, parameters typically refer to 

cognitive structures or processes or they are measures of the contribu-

tion of different processes to overall behavior (cf. Batchelder, 2010). 

Experimental manipulations are intended to exert an influence on the 

different cognitive processes and their contribution to overall perfor-

mance. These manipulations are thus reflected by variations of the mo-

del parameters. 

By contrast, parameters of psychometric models fall into three classes: 

(a) Parameters characterizing the latent ability distribution of partici-

pants, 

(b) Parameters characterizing various aspects of the test items, and 

(c) Parameters representing situations, methods etc. 

 Comment 3-1: Parameters in psychometric models: 

 

In psychometric models, there are no parameters representing 

the values of single participants on the latent trait variables. 

This is due to the fact that models represent populations and 

parameters, thus, refer to the characteristics of the distribution 

of the latent traits within the population. 
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As a consequence, latent scores of single members of the po-

pulation have to be estimated (or predicted) after estimation of 

the model using the estimated parameters. 

 
There exist different methods for estimating latent scores that 

do not result in exactly the same estimated score. 

 

The usage of a population of latent scores that is characterized 

by a distribution serves different functions in different mo-

dels: 

 

(a) In the context of classical test theory the concept of relia-

bility, as well as the axioms of classical test theory, are 

based on the variances and covariances of the population 

of true scores. Thus the definition of the reliability con-

cept and the specification of the axioms both require the 

existence of distributions of true scores (cf. Chapter 4). 

 

(b) In probabilistic item response models reliability is replac-

ed by the concept of information functions. These do not 

require population distributions of the latent scores. How-

ever, the estimation of item parameters requires the as-

sumption of a population distribution (except for the one-

parameter Rasch model). 

It may thus be asserted that the two disciplines, alluded to by Cronbach 

(1957) [cf. Section 1.2], are reflected by the difference between cogni-

tive and psychometric models. However, the modeling approach enab-

les a unification of the different approaches since nothing prevents the 

incorporation of »psychometric characteristics« into cognitive models 

and/or the incorporation of parameters reflection experimental mani-

pulations into psychometric models (For various attempts in this direc-

tion, see different contributions in the book of Embretson (2010)). 

For example, a multilevel (or random coefficient version) of the Brad-

ley-Terry-Luce model in which latent scale values are represented by 

latent distributions with parameters characterizing these distributions 

(cf. Figure 3-7) has been proposed by Bökenholt (2001). In the re-

sulting model the population of scores is represented within the model. 

On the other hand, Embretson’s (1998) cognitive design system ap-

proach incorporated cognitive design features into psychometric mo-

dels. The gap between the two disciplines may thus be overcome 

within the modeling approach. 

We, next, turn to the discussion of different types of psychometric mo-

dels, beginning with the models of classical test theory (CTT). 
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Figure 3-7: Bradley-Terry-Luce model with a multivariate distributi-

on of the latent scores. The variables i and j are rand-

om variables representing latent scores. The parameters 

i and j denote the means of the latent score distribution 

and the parameter 
2

i  and 2

j  the variances. ij  denotes 

the covariance between latent scores. 

3.5 Exercises of Chapter 3 

 Exercise 3-1: Generating plots of item response functions 

 Generate the plots of the item response functions of Figure 

3-2 (p. 28). 
 

 Exercise 3-2: Thurstone’s Case V 

 Show that in Thurstone’s Case V the equation: 

 
 

2

i j

i jP
  

   
 

   

 holds. 
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 Hints: 

1. Note that    0i j i jP P       

2. The distribution of two independently standard normal 

distributed variables is a normal distributed random 

variable with mean equal to the difference of the means 

and variance equal to the sum of the variances of the two 

variables, in our case: 

  ,2i j i jN    . 
 

 Exercise 3-3: Bradley -Terry-Luce model: Computation of 

expected frequencies 

 Given: 

Results of the 1987 Season for the American League Baseball 

Teams (Agresti, 2002, Table 10.10, on page 437): 
 

Pairing Nwin Nlose 

Milwaukee Detroit 7 6 
 Toronto 9 4 
 New York 7 6 
 Boston 7 6 
 Cleveland 9 4 
 Baltimore 11 2 
Detroit Toronto 7 6 
 New York 5 8 
 Boston 11 2 
 Cleveland 9 4 
 Baltimore 9 4 
Toronto New York 7 6 
 Boston 7 6 
 Cleveland 8 5 
 Baltimore 12 1 
New York Boston 6 7 
 Cleveland 7 6 
 Baltimore 10 3 
Boston Cleveland 7 6 
 Baltimore 12 1 
Cleveland Baltimore 6 7 

 

 The score value of Baltimore was set to 0 in order to anchor 

the latent scale. The estimated latent scores of the other teams 

using the logit and probit models are as follows: 
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Model Baltimore Detroit Toronto New York Boston Cleveland 

Logit 1.581 1.436 1.294 1.248 1.108 0.684 

Probit 1.372 1.240 1.128 1.080 0.963 0.588 
 

 Use the following design matrix to compute the predicted 

wins and losses: 
 

Milwaukee Detroit Toronto New York Boston Cleveland 

1 -1 0 0 0 0 

1 0 -1 0 0 0 

1 0 0 -1 0 0 

1 0 0 0 -1 0 

1 0 0 0 0 -1 

1 0 0 0 0 0 

0 1 -1 0 0 0 

0 1 0 -1 0 0 

0 1 0 0 -1 0 

0 1 0 0 0 -1 

0 1 0 0 0 0 

0 0 1 -1 0 0 

0 0 1 0 -1 0 

0 0 1 0 0 -1 

0 0 1 0 0 0 

0 0 0 1 -1 0 

0 0 0 1 0 -1 

0 0 0 1 0 0 

0 0 0 0 1 -1 

0 0 0 0 1 0 

0 0 0 0 0 1 
 

 Comments: 

 1. The columns represent the different teams. There is no 

team representing Baltimore since its scale value was fixed 

to 0. 

 2. Each line represents a pairing, e.g. the first line represents 

the pairing between Milwaukee and Detroit (note that scale 

values are subtracted). 

 3. Lines representing parings with Baltimore contain only a 1. 
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 Compute the predicted wins and losses for the logit and the 

probit model using the scale values given above. 

 Hint: 

 In case of the probit model the entries of the design matrix 

have to be divided by 2  (why?). 
 

 Exercise 3-4: Bradley -Terry-Luce model: Estimation of 

scale values 

 Given: 

The data and design matrix of Exercise 3-3. 

 Estimate the scale values from the data using generalized lin-

ear models. 
 

 Exercise 3-5: SDT model: Computation of the probability of 

a correct response 

 Given: 

The parameters of the SDT model: 

 0N  , 1N   

 0.8S  , 1.2S   

 Compute: 

    correct 0.5 Hit 0.5 False alarmP P P    , 

 using as decision bounds (thresholds): 

 
1 0.622   (=optimal bound in case of equal base rates and 

payoffs) 

 
2 1.500   (=non-optimal criterion). 
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4. Classical Test Theory (CTT) 

Classical test theory (CTT) constitutes one of the approaches to the 

analysis of tests and questionnaires. Its methods are used commonly. It 

is thus important to understand the fundamental assumptions and 

methods of this approach. The following presentation proceeds as fol-

lows: We start with the presentation of some elementary facts about 

covariance matrices (Section 4.1). Then, the traditional characterizati-

on of the theory is provided (Section 4.2). Third, the item response 

version of the classical test models using structural equation models 

(SEM) is discussed (Section 4.3). The resulting models are but special 

cases of the general test model described in previous chapter (cf. 

Figure 3-1, on page 24). Foruth, the concept of reliability (Section 4.4) 

and validity (Section 4.5) are discussed. It turns out that these concepts 

are best understood in the context of the modeling approach of modern 

psychometrics. Finally, problems of modeling mean structures are 

discussed (Section 4.6). Specifically the problem of estimation latent 

ability scores and the comparison of different groups are considered. 

4.1 Preliminaries: Some elementary facts about covariance matrices 

Assume two sets of random variables denoted by 1 2, , , nX X X  and 

1 2, , , mY Y Y . The covariance matrix Σ  of the whole set of variables is 

the mn  mn matrix: 

1 1 2 1 1 1 1 2 1

2 1 2 2 2 1 2 2 2

1 2 1 2

1 1 1 2 1 1 1 2 1

2 1 2 2 2 2 1 2 2

1 2 1 2

2

1
2

2

2

2
1

2
2

n m

n m

n n n n n m

n m

n m

n m

X X X X X X Y X Y X Y

X X X X X X Y X Y X Y

X X X X X X Y X Y X Yn

Y X Y X Y X Y Y Y Y Y

Y X Y X Y X Y Y Y Y Y

m

X X X Y Y Y

X

X

X

Y

Y

Y

     

     

     

     

     

Σ

1 2 1 2

2

m m m n m m mY X Y X Y X Y Y Y Y Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 

      

 

The matrix contains three different types of entries: 

1. Variance parameters in the main diagonal: 
2

iX   1,2, ,i n  and 

2

jY   1,2, ,j m . 

2. Covariance parameters representing the covariance between the 

same group of variables: 
'i iX X   , ' 1,2, ,i i n  and 

'j jY Y  

 , ' 1,2, ,j j m . 
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3. Covariance parameters representing the covariance between variab-

les from different groups: 
i jX Y   1,2, ,i n   1,2, ,j m . 

The covaince matrix can thus be partitioned into four regions: 

1 1 2 1 1 1 1 2 1

2 1 2 2 2 1 2 2 2

1 2 1 2

1 1 1 2 1 1 1 2 1

2 1 2 2 2 2 1 2 2

1 2 1 2

2

1
2

2

2

2
1

2
2

n m

n m

n n n n n m

n m

n m

n m

X X X X X X Y X Y X Y

X X X X X X Y X Y X Y

X X X X X X Y X Y X Yn

Y X Y X Y X Y Y Y Y Y

Y X Y X Y X Y Y Y Y Y

m

X X X Y Y Y

X

X

X

Y

Y

Y

     

     

     

     

     

Σ

1 2 1 2

2

m m m n m m mY X Y X Y X Y Y Y Y Y

 
 
 
 
 
 
   

   
  

 
 
 
 
 

      

XX XY

YX YY

Σ Σ

Σ Σ

. 

XXΣ  represents the n  n covariance matrix of the variables 

1 2, , , nX X X . 

YYΣ  represents the m  m covariance matrix of the variables 

1 2, , , mY Y Y . 

XYΣ  represents the n  m matrix of the covariances between vari-

ables from different groups: 1 2, , , nX X X  and 1 2, , , mY Y Y .  

YXΣ  represents the m  n matrix of the covariances between vari-

ables from different groups: 1 2, , , nX X X  and 1 2, , , mY Y Y . 

It is the transpose of XYΣ :  T

YX XYΣ Σ . This means that rows 

and columns are interchanged. 

Here are two important results concerning the relationship between the 

entries of a covariance matrix and the variance and covariance of sums 

of variables (cf. Exercise 4-1): 

1. Let X be the sum 1 2 nX X X X    . The variance of the sum 

variable X,  Var X , is the sum of all the entries of the covariance 

matrix XXΣ  of the variables 1 2, , , nX X X . 

2. Let Y be the sum 1 2 mY Y Y Y    . The covariance between the 

two sum variables X and Y,  Cov ,X Y , is given by the sum of all 

the entries of the matrix XYΣ  (or YXΣ ) of the matrix containing the 

covariance between the different groups of variables 1 2, , , nX X X  

and 1 2, , , mY Y Y . 
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Concnering the numbers of different relevant entries the following 

facts are important. Let XXΣ  be the covariance matrix of the variables 

1 2, , , nX X X : 

1. XXΣ  contains 2n n n   entries. 

2. XXΣ  contains n variance terms in the main diagonal. 

3. XXΣ  contains  2 1n n n n     covariance terms: the 2n  entries of 

the matrix minus the n variances in the main diagonal. 

4. XXΣ  contains  1 2n n   unique covariance terms (since XXΣ  is 

symmetric, i.e. the entries in the upper right part are identical 

to that in the lower left part). 

5. XXΣ  contains  1 2n n   variance plus unique covariance terms: 

   1 2 1 2n n n n n      . 

4.2 The Basic Concepts of CTT 

In the following, a description of CTT is given that is close to explica-

tion of the theory in classical texts like Lord and Novick (1968). The 

presentation of the theory starts with a general characterization (Secti-

on 4.2.1). This is followed by an explication of the axioms of CTT 

(Section 4.2.2) and the classical test models (Section 4.2.3). Finally, 

we discuss problematic aspects underlying the conception of CTT 

(Section 4.2.4). 

4.2.1 Exposition of CTT 

CTT is concerned with the following three types of parameters cha-

racterizing tests and their relationships: 

1. Expected values: Expected test values are used for representing the 

magnitude of abilities and of test results within the population of 

examinees. Specific issues concern the difference in expected va-

lues between different groups or the bias of tests, that is, whether a 

test over- or underestimates the latent abilities of different groups. 

2. Variances: Variances concern the dispersion of test scores, abilities 

and errors. CTT enables the attribution of the variance of test scores 

to different sources.  

3. Covariances / Correlations: These represent the relationships bet-

ween tests, latent abilities and errors. CTT explains the existence of 

covariance (or correlations) between observed test scores of differ-

ent tests. 

The expectations constitute the mean structure and the variances and 

covariances the covariance structure. CTT introduces a number of as-

sumptions that permit the explanation of the observed mean and cova-

riance structure of the tests. These assumptions can be classified into 

two groups: 
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1. The axioms of CTT: These constitute the abstract framework of the 

theory. 

2. The classical test models: These are based on further assumptions 

(additionally to the axioms) with respect to the relationships bet-

ween different tests. 

The axioms of CTT provide restrictions on the set of possible models. 

However, these restrictions are not sufficient to generate predictions 

that could be testes empirically. Due to this reasons additional assump-

tions are required that are incorporated into the classical test models. 

Given enough test items, the classical test models generate empirically 

testable predictions. They also enable the estimation of the reliability 

of the test items as well as the size of the measurement error and the 

latent ability scores. 

CTT is concerned with means, variances and covariances (or correlati-

ons) only. It makes no assumption about the exact distribution of the 

test scores. By consequence, the empirical adequacy of the test models 

cannot be tested statistically. 

 Concept 4-1: Weak and strong true score theory: 

 

Due to the fact that only means, variances and covariances are 

considered, CTT has also been called weak true score theory 

in contrast to strong true score theory that is characterized by 

the specification of distributions. 

  

Following to this general characterization the axioms of CTT will be 

described next. 

4.2.2 The Axioms of CTT 

The core of CTT is constituted by the decomposition of the observed 

test score into a true score and error score (measurement error): 

pi pi piY    . (4-1) 

The symbols have the following meaning: 

piY  represents the observed test score of person p on test i, 

pi  symbolizes the true score of person p on test i, 

pi  denotes the measurement error of person p on test i. 

Note that in Equation (4-1) the true score is a constant whereas the 

observed test score and the error are random variables. 

Equation (4-1) tells us that the observed test score of person p on test i 

is the sum of the true score plus the measurement error. The following 

additional assumption concerning the expectation of the measurement 

errors is made: 

 E 0pi  , (4-2) 
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or, equivalently (due to the rules of expectations): 

  pipiY E . (4-3) 

This assumption is based on the idea that the true score corresponds to 

the expectation of the test scores in repeated measurements of person 

p on test i (further details on this point are provided below in Section 

4.2.4.2). 

The decomposition of a test score into true score and error leads to the 

problem of a lack of identification of true score and error: Given a 

single measured value it is impossible to determine the value of the 

true score and the error. One possible solution to this problem might 

consist in the repeated application of the same test item to the same 

examinee. This would result in a distribution of test scores: The expec-

ted value would then serve as an estimator of the true score and the 

variance of the scores can be used as estimator of the error variance. 

Unfortunately this solution is practically infeasible. CTT has thus ta-

ken another approach: Different tests (test items) are applied and the 

covariance structure underlying the observed test scores are assumed 

to be restricted in specific ways. The restrictions are specified in two 

different ways: 

1. The axioms of CTT specify restrictions on the covariances by as-

suming that certain covariances are zero. 

2. The classical test models of CTT are specified. These introduce fur-

ther restrictions on the covariance structure. 

 Concept 4-2: Axiom: 

 An axiom is an statement that is assumed to be true. 

 
Comment: An axiom does not represent a necessary or eternal 

truth. 

Here are the axioms of CTT: 

 Cov , 0i i    (4-4) 

 Cov , 0i jτ   (4-5) 

 Cov , 0i j    (4-6) 

Previously to discussing the axioms it should be noted that in equation 

(4-4) to (4-6) the index p is missing. By consequence, contrary to pi , 

i  represents a random variable (and not a constant). Therefore it is 

written in italic (cf. Notation 3-1 on page 27). Moreover, 
iε  now refers 

to the variance of the errors within the population of examinees (bet-

ween-subjects distribution), and not, to within-subjects distribution 

like pi . Consequently, the axioms refer to populations of examinees 

(cf. Comment 3-1 on page 36). 
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The first axiom (4-4) states that the error and the true score of a test i 

are uncorrelated within the population (for all tests 1,2, ,i n ). 

The second axiom (4-5) asserts that the measurement error j  associ-

ated with test j is uncorrelated with the true score of on different test j 

 i j . 

Together, Axiom 1 and 2 state that the true score of a test is neither 

correlated with the own error nor with the error of another test. This is 

true for all tests. 

Finally, the third axiom maintains that the errors associated with dif-

ferent tests are uncorrelated. This axiom may be relaxed, and, in fact, 

models assuming correlated errors will be considered. 

Ex. 4-1 illustrates how the axioms of CTT result in the simplification 

of the covariance structure of true scores and measurement errors. 

 
Ex. 4-1: Simplification of the covariance structure of true 

scores and errors due to the axioms of CTT 

 

Given: 

 3 random variables 1Y , 
2Y , and 

3Y  represent the test 

scores of three tests. 

 3 random variables 
1 , 

2 , and 
3  represent the true score 

of the 3 tests. 

 3 random variables 
1 , 

2 , and 
3 , represent the 

measurement errors of the 3 tests. 

 
The covariance matrix Σ  constitutes the covariance structure 

of true scores and errors 

 

1 1 2 1 3 1 1 1 2 1 3

2 1 2 2 3 2 1 2 2 2 3

3 1 3 2 3 3 1 3 2 3 3

1 1 1 2 1 3 1 1 2 1 3

2 1 2 2 2 3 2 1 2 2 3

3 1 3 2 3 3 3 1 3 2 3

1 2 3 1 2 3
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2
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2
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 The symbols have the following meaning: 

 

2

i
  denotes the variance of the true scores of test i in der 

population ( 3,2,1i ). 

 

2

i
  denotes the variance of the errors of test i in der popula-

tion ( 3,2,1i ). 
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i j

   denotes the covariance between the true scores of test i 

and test j ( 3,2,1, ji ) [
i j j i

      ]. 

 
i j

   denotes the covariance between the true scores of test i 

and the errors of test j ( 3,2,1, ji ) [
i j j i

      ]. 

 
i j

  denotes the covariance between measurement errors of 

test i and j  , 1,2,3i j   [
i j j i

      ]. 

 

The axioms of CTT result in a simplification by assuming 

that the covariance between true scores and errors as well as 

the covariance between errors is zero: 0
i j

    and 0
i j

   , 

respectively  , 1,2,3i j  . This results in the following sim-

plified covariance matrix: 
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2 1 2 2 3

3 1 3 2 3
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2

3

1 2 3 1 2 3

2
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2
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The independence assumptions specified by the axioms lead 

to a simplification of the representation of variances of 

observed test scores iY  ( 3,2,1i ) as a function of the 

variances and covariances of true scores and errors. 

Due to the decomposition of the observed value into true 

score and error (cf. Equation 4-1) the variance of the 

observed score is given by: 

 

         Var Var Var Var 2 Cov ,i i i i i i iY             

Since  Cov , 0i i    the expression simplifies to: 

     Var Var Vari i iY     

 
Consequently, the covariance matrix yΣ  of the observed 

values has the following structure: 
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The associated covariance equations (cf. Concept 4-11, on 

page 69), representing the variances and covariances of the 

observed test scores in terms of the variances and covariances 

of true scores and errors, are thus given by: 
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1 2 1 2

1 3 1 3

2 3 2 3

2 2 2
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 

 

 

 

 

 

 

The observed variances and covariances of the observed test 

scores are located on left-hand side of the covariance equati-

ons whereas the unknown variances and covariances of the 

true scores and error terms are and right-hand side. 

 

Our objective consists in estimating the unknown parameters 

representing the variances and covariances of the true scores 

as well as the variances of the error terms by solving the cova-

riance equations for the unknown quantities. If the unknown 

parameters can be uniquely computed by using the whole set 

or a subset of the covariance equations then the parameters 

are identified. 
 

 

Obviously, the variances of the true scores and errors are not 

identified since there are only three equations involving vari-

ance terms whereas there are six unknown variances. 

 

By contrast, the covariances between true scores are (exactly) 

identified: The observed covariances between test scores may 

be used as estimates of respective covariances of the involved 

true scores. 

 

The example illustrates that the axioms of CTT do not specify 

enough restrictions to identify the variance parameters of the 

true and error scores. 

 

To enable the identification of all parameters, and, moreover, 

to generate empirically testable predictions additional restric-

tions are required leading to a further simplification of the 

covariance structure of the true scores. 
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Previously to discussing these additional restrictions let us summarize 

our considerations arrived at so far: 

1. The decomposition of a person’s test score into the true score and 

error score raises the problem of how to determine the person’s true 

and error score. 

2. The problem could be solved »in principle« by means of repeated 

testing of person p: Repeated testing results in a within-subject dis-

tribution of test values whose mean can be used as an estimate of 

the true score and whose variance as an estimate of the error 

variance. 

This procedure assumes that such a within-subject distribution ex-

ists. Various scientists have cast doubt on the concept of a within-

subject distribution of this sort (Borsboom, 2005; Holland, 1990). 

3. CTT solves the problem by the specification of axioms and specific 

test models (to be discussed in the next section) that impose 

constraints on the covariance structure of true and error scores, thus 

resulting in models that enable the estimation of the covariance 

structure of the true and error scores. 

4. The axioms do not refer to a within-subject distribution but to the 

distribution of true and error scores within the population of exami-

nees, that is a between-subjects distribution. 

Note that the variance of the true scores has no meaning with 

respect to the within-subject perspective since in this case the true 

score is a constant value. The reliability of a test that is an import-

ant quantity in CTT measuring the precision of a test (cf. Section 

4.4) is also founded on the between subjects distribution and thus 

population based (cf. Comment 3-1, page 36). 

5. The axioms do not lead to a simplification of the covariance struc-

ture that enables the identification of the parameters of the model. 

Therefore, additional constraints have to be specified. These are 

implemented in the classical test models to which we turn next. 

4.2.3 The Classical Test Models 

In the following we discuss three test model of CTT: 

1. The congeneric model (also called -congeneric model), 

2. The -equivalent model, and 

3. The parallel model. 

The congeneric model is the most general one. The imposition of 

further constraints results in the -equivalent model. Specifying addi-

tional restrictions lead to the parallel model which is the most specific 

one. Due to the fact that the more specific model results by imposing 

restrictions on the superordinate one, the three test models are nested. 

For each of the three models the unknown variance parameters can be 

estimated with enough tests being present. 

Let us consider the three models in detail. 
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4.2.3.1 THE CONGENERIC TEST MODEL 

As illustrated above, the general model of CTT given by the decompo-

sition of test scores and application of the axioms of CTT does not 

impose any restrictions on the covariance structure of the true scores. 

A simplification of this covariance structure is thus an obvious option 

for constructing model that can be estimated. For the present models 

this is achieved by assuming that the true scores of the different tests 

are linear dependent, i.e. one true score is simply a linear function of 

the other one. 

 Concept 4-3: Congeneric model of mental tests: 

 Given: 

 1 2, , , nY Y Y  observed test scores for n tests. 

 1 2, , , n    true scores associated with the n tests. 

 1 2, , , n    measurement errors associated with the n tests. 

 

We chose one of the tests, e.g. the first test, as a reference 

with respect to which the true scores of the other tests are 

linear functions. The true score of the selected test is denoted 

by the symbol   (no subscript). 

 
The n tests are congeneric if the associated true scores con-

form to the linear relation: 

  2, ,i i i i n       (4-7) 

 The coefficients i  are asumed to be positive: 0i  . 

 
The congeneric model entails the following covariance struc-

ture of the true scores: 

 

2

2

2 2

1

2, ,i

i

i n


  
  

   
i





 (4-8) 

 

2

2

2

1; 2, ,

1; 2, ,

, 2, , ;
i j

j

i

i j

i j n

j i n

i j n i j

    


      
     



  



 (4-9) 

 

Since the n tests are linearly dependent the correlation bet-

ween all trues scores is 1.0 (cf. Ex. 4-2). Since, by assump-

tion, the coefficients i  are positive no negative correlations 

can result. 

 

Comment: 

The intercept parameters  2, ,i i n   are irrelevant as far 

as the covariance structure is concerned. However they are 

important for modeling the mean structure (cf. Section 4.6) 

Please note that the entailed covariance structure results from the line-

ar constraint by applying simple covariance algebra (cf. Exercise 4-3). 
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 Ex. 4-2: Covariance structure of true scores and of observed 

test scores of 4 congeneric tests: 

 Given: 

 4321 ,,, YYYY  the observed test scores of 4 tests.  

 2 3 4, , ,     the associated true scores. 

 1 2 3 4, , ,     the respective measurement errors. 

 The covariance matrix of the true scores looks like this: 

 

2 2 2 2

2 3 4

2 2 2 2

2 2 3 2 4

2 2 2

3 3 4

2 2

4

       
 

        
     
 

   

   

  

 



 

 
Since the covariance matrix is symmetric only the entries on 

and above the main diagonal are shown. 

 
The correlation between the true scores   and i   4,3,2i  is 

given by: 

  
 

       

2

2 2 2

Cov ,
Corr , 1.0

Var Var

i i
i

i i

 
  

    



 

 
 

 
 

 
Similarly, the correlation between the true scores i  und j  

 , 2,3,4;i j i j   is given by: 

  
 

       

2

2 2 2 2

Cov ,
Corr , 1.0

Var Var

i j i j

i j

i j i j

  
  

     



 

 
 

 
 

 

The assumption of a linear relationship between the true scores 

of the tests leads to a considerable simplification of the covari-

ance structure of the true scores: 

 

The the covariance matrix of the true scores for the general 

CTT model comprises  1 2 4 5 2 10n n      unknown vari-

ances and covariances. 

 
In the congeneric model these 10 unknown parameters are re-

presented by 4 unknown parameters: 
2 , 2 , 3 ,and 

4 . 
 

 
The model implied covariance matrix (upper part) of the ob-

served test scores has the following structure: 
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1

2

3

4

2 2 2 2 2

2 3 4

2 2 2 2 2

2 2 3 2 4

2 2 2 2

3 3 4

2 2 2

4

        
 

         
 

      
    

    

   

  

 

 

 

The 10 observed variances and covariances of the test scores 

are thus explained by means of 8 free parameters: 
2 , 

2 , 3 , 
4 , 

1

2 , 
2

2 , 
3

2 , and 
4

2 . 

The first four parameters represent the covariance structure of 

the true scores, whereas the last four parameters represent the 

covariance structure of the errors. 

 

The 8 unknown parameters can be determined from the model 

implied variances and covariances of the observed test scores 

by solving the model (or covariance) equations for the un-

known parameters (cf. Exercise 4-4).  

The 10 model equations linking model implied (co-) variances 

to the observed ones follow directly from the model implied 

covariance matrix of the observed scores shown above (for an 

example of covariance equations, cf. Ex. 4-1, on page 47). 
 

 Concept 4-4: Parameters (of a statistical model): 

 
Parameters are fixed but usually unknown quantities that cha-

racterize the population distribution in question. 

 

A statistical model is used for modeling the population distri-

bution. Thus, the parameters of a statistical model character-

ize the population distribution in case of the model being (ap-

proximatively) correct. 

 

In CTT models, the parameters characterize the mean and co-

variance structure of the test scores that are predicted by a 

model. In this case the model does not represent the complete 

distribution but only the first and second (central) moments of 

the distribution (i.e. means and (co-) variances). Consequent-

ly, in CTT the parameters characterize the first and second 

central moments of the population only. 
 

 Concept 4-5: (Sample-) Statistics: 

 

A sample statistic (or simply a statistic) is a function of the 

observed sample. Thus its value is determined by the obser-

ved sample values. 

 
In CTT models the relevant statistics are the means and the 

(co-) variances of the observed test scores. 
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 Notation 4-1: Parameters and statistics 

 

Parameters and sample statistics have to be kept strictly apart. 

This is reflected by the notation used: Parameters are denoted 

by Greek letters (e.g.  , 
2 , i ), whereas statistics are sym-

bolized by Latin letters (e.g. x  
2

Ys ). 

Let us briefly summarize the main aspects of the congeneric model: 

The assumed linear relationship between the true scores, given by 

Equation 4-7, results in a simplification of the covariance structure of 

the true scores. Specifically, the correlation between true scores be-

comes 1.0 (For an illustration, cf. Ex. 4-2). As a consequence the 

addition of further congeneric tests (i.e. tests whose true scores 

conform to Equation 4-7) results in a stronger increase of observed 

variances and covariances than of new parameters. For example, with 

3 tests the number of free parameters equals the number of observed 

variances and covariances (=6). With 4 tests the number of variances 

and covariances is 10. However, the number of free parameters is only 

8. 

The addition of a new congeneric test to n  existing tests requires 2 ad-

ditional free parameters: i  and 2

i
 . However, the number of observ-

ed variances and covariances increases by 1n  (n new covariances 

and 1 new variance). 

 Comment 4-1: The basic principle underlying the congeneric 

model 

 

The presentation of the model using Equation 4-7 does not 

elucidate the main principle underlying the congeneric model. 

Using structural equations for representing the model (Section 

4.3) reveals that the restriction given by Equation 4-7 amounts 

to the assumption that the tests measure the same true score 

however with different sensitivity. 

4.2.3.2 DIGRESSION: COMPUTATION OF THE MODEL IMPLIED COVARI-

ANCE MATRIX USING MATRIX METHODS 

The computation of the covariance matrix of true scores as well as of 

the model implied covariance matrix of test scores (cf. Ex. 4-2, page 

52) can be achieved with little effort using matrices (as well as a pro-

gram, like Excel, Matlab or R that enables the manipulation of matri-

ces. 

For the computation of the relevant matrices of the congeneric model 

the specification of the following three matrices is required: 
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2

3

1

n

 
 

 
  
 
 
  

λ , 
2   Φ  , 

1

2

2

2

2

0 0

0 0

0 0
n

 
 

 
  
 
  

Ψ







. 

λ  (»lambda«) denotes a 1n  column vector of the slope parameters 

of the linear relationship in Equation 4-7. Φ  (»Phi«) is a 11  and Ψ  

(»Psi«) is an n n  matrix. 

 

 Notation 4-2: Notation for matrices and vectors 

 
Matrices and vectors are denoted by bold letters. In case of 

matrices containing parameters Greek bold letters are used. 

 
Vectors are denoted by lowercase letters and matrices by up-

percase letters. 

The covariance matrix Θ  (»Theta«) of the true scores results from the 

specified matrices by mean of the matrix multiplication: 

T
λΦλΘ  . 

The symbol » T « represents the transposition of a vector or a matrix, 

i.e. the exchange of rows and columns. For the actual example the 

matrix multiplication looks like this:  

Konkret sieht die dargestellte Matrizenoperation wie folgt aus: 

 2 2

2

2 2 2

2

2 2 2 2

2 2 2

2 2 2 2

2

1

1 n

n

n

n

n n n

  

 
 

          
 
 

     
 
       
 
 
        

T
Θ λ Φ λ



  

  

  

 

The model implied covariance matrix Σ  of the test scores results from 

this matrix by adding the covariance matrix Ψ  of the errors: 

ΨΘΣ  . 

 Comment 4-2: On the usage of matrices 

 

To unexperienced people the usage of matrices has usually a 

dissuasive effect. However, the employment of matrices (as 

well as of a proper computer program) actually simplifies the 

computation (cf. Exercise 4-2).  
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In addition, the usage of matrices has a mnemonic advantage 

since complicated formulas can often be expressed in a simple 

way by using matrices. 

 

Specifically, the computation of the reliability in complex me-

asurement models is greatly simplified by using matrices (cf. 

Section 4.4.2.2). 

Let us now consider the second test model of CTT. 

4.2.3.3 THE  (TAU) EQUIVALENT TEST MODEL 

The -equivalent test model constitutes a specific case of the conge-

neric model by fixing the regression coefficients  2, ,i i n   in 

Equation 4-7 to the value 1.0. 

 Concept 4-6: The model of -equivalent tests: 

 Given: 

 1 2, , , nY Y Y  observed test scores for n tests. 

 1 2, , , n    true scores associated with the n tests. 

 1 2, , , m    measurement errors associated with the n tests. 

 

We chose one of the tests, e.g. the first test, as a reference 

with respect to which the true scores of the other tests are 

linear functions. The true score of the selected test is denoted 

by the symbol   (no subscript). 

 
The n tests are congeneric if the associated true scores con-

form to the linear relation: 

 
The n tests are essential -equivalent, if the true scores con-

form to the following linear relationship: 

  2, ,i i i n     (4-10) 

 The n tests are -equivalent in case of:  0 2, ,i i n   . 

 
The model of (essentially) -equivalent tests implies the fol-

lowing covariance matrix of the test scores: 

 

1

2

2 2 2 2

2 2 2

2 2

n

    
 

   
 
 
   

   

  

 

 (4-11) 

 

Consequerntly the model predicts identical covariances be-

tween each of the n tests. The covariance predicted by the 

model conforms to the variance of the true scores. 
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Comment: 

The distinction between -equivalent and essential -equiva-

lent tests concerns the mean structure only and not the covari-

ance structure (cf. Section 4.6.1): In case of -equivalent tests 

the observed means of the test scores are assumed to be 

identical for the n tests. This additional restriction [ 0i   

 2, ,i n ] is not part of the essential -equivalent test mo-

del. The distinction is irrelevant if one is interested in the 

covariance structure only. 

Contrary to the congeneric model the restrictions imposed by the -

equivalent model on the covariance structure of the observed test 

scores is obvious. The parameters of the essential -equivalent model 

can be estimated with 2 tests only. In this case, there are 3 observed 

test statistics (the two variances of the 2 test scores and the covariance 

between the two test scores), and the model comprises 3 free 

parameters: 
2 , 

1

2 , and 
2

2 . The addition of a new -equivalent test 

to n existing ones requires the addition of one parameter only ( 2

i
 ) 

whereas the number of observed variances and covariances increases 

by 1n  (n new covariances and 1 new variance). Thus, with 3 -

equivalent tests the model comprises 4 free parameters to explain 6 

free data points. 

Let us no consider the last and most restricted model of CTT that con-

stitutes a special case of the -equivalent model. 

4.2.3.4 THE PARALLEL TEST MODEL 

The congeneric and -equivalent test models comprise restrictions for 

constraining the covariance structure of the true scores. The parallel 

test model adds restrictions on the error variances. 

 Concept 4-7: The model of parallel tests: 

 

n test are parallel if they are -equivalent and, in addition the 

error variances are assumed to be identical: 

 
1 2

2 2 2 2

n
           . 

 
The model implied covariance matrix of the observed test 

scores has the following structure: 

 

2 2 2 2

2 2 2

2 2

    
 

   
 
 

   

   

  

 

 (4-12) 
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Thus the model predicts not only identical covariances bet-

ween test scores but also identical variances. 

 
The n tests are strictly parallel if they are parallel, and, in ad-

dition, the means of the test scores are identical. 

Tests that are strictly parallel can be assumed to be perfectly equiva-

lent for testing latent abilities. They provide exactly the same informa-

tion about the latent ability. By consequence, instead of repeated appli-

cation of the same test, one can use strictly parallel tests for assessing 

an examinee’s ability. The mean of the test scores can be used as an 

estimate of the true score and their variance as an estimate of the error 

variance. 

Similar to the -equivalent model, the parameters of the parallel test 

model can be estimated using two tests only. However, the model can 

also be tested with two tests since the model predicts that the variances 

of the two tests are equal. Note also that the addition of further parallel 

tests to exiting one does not require additional model parameters: The 

model explains the covariance structure of the tests using only two pa-

rameters: 
2  and 

2 . 

This terminates our presentation of the core of CTT. On the basis of 

the assumptions that enter the classical test models formulas for the 

reliabilities of (unweighted) sums of test scores can be derived. These 

equations are used in typical applications as estimators of the precision 

of the test (cf. Section 4.4.2). 

Let us now consider some critical issues associated with CTT. 

4.2.4 Criticism of CTT 

The following criticism of CTT concerns two closely related aspects 

of CTT: 

1. The conception of the true score as an expectation. 

2. The assumption of within-subjects distribution of test scores for the 

same test. 

Let us take a closer look at these two problematic aspects of CTT. 

4.2.4.1 THE TRUE SCORE CONCEPT IN CTT 

It is important to realize that the true score in CTT does not conform to 

the construct of a latent ability. Rather, the true score corresponds to 

the expectation of the test scores with repeated testing of the same 

person. To illustrate the concept, Lord and Novick (1968) present the 

following thought experiment: 

«Suppose we ask an individual, Mr. Brown, repeatedly whether he is 

in favor of the United Nations; suppose further that after each que-

stion we “wash his brains” and ask him the same question again. Be-

cause Mr. Brown is not certain as to how he feels about the United 

Nations, he will sometimes give a favorable and sometimes an unfa-
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vorable answer. Having gone through this procedure many times, we 

then compute the proportion of times Mr. Brown was in favor of the 

United Nations…» (Lord & Novick, 1968, page 29). 

Accordingly, there exists a true score for each person and each test, 

and the true score corresponds to the expectation of the test scores of 

the person with repeated application of the same test. Thus the true 

score does not exist independently from the test: It is a test dependent 

quantity. 

By contrast, the latent variable conception assumes a latent ability 

construct that exists independently of a test, and each person possesses 

a specific value on this latent construct (cf. the discussion in Chapter 

1). 

The true score conception faces a number of difficulties (cf. Bors-

boom, 2005): 

1. The fact that for each test there is a true score leads to an inflation 

of true scores. For example application of a test under different 

light conditions results in different true scores. Consequently, vari-

ations of situational factors generate new true scores. 

2. The existence of a true score does not implicate that test measures 

something useful. For example, a test, consisting in the addition of 

two numbers as quickly as possible, and to bind the shoe laces as 

fast as possible, has an assigned true score. 

In this way true score theory precludes a differentiation between 

constructs and pseudo constructs (cf. Chapter 2.3). 

3. The true score conception raises the issue of the relationship bet-

ween true scores and latent constructs. Obviously, the proponents of 

true score theory regard the main purpose of mental tests in mea-

suring mental abilities. Since the true score is a quantity that is re-

lated to tests a relationship between true scores and mental con-

struct has to be established. 

In conclusion, the true score conception raises a number of conceptual 

problems that can be prevented by a latent variable conception. By 

consequence, the true score conception seem to be inappropriate in 

scientific context. The true conception may however be useful in non-

scientific contexts when tests are used as a tool of selection. For ex-

ample, the LSAT (law school admission test) is used as an entrance 

test to law schools. The empirical validity of the test, as measured, for 

instance, by the correlation with study success can be used for 

assessing the value of the test (For a detailed discussion of the concept 

of empirical validity, cf. Section 4.5.2). 

Let us now take a critical look at the within-subjects distribution of 

test scores that is used for the definition of the true score. 
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4.2.4.2 ON THE UTILITY OF THE WITHIN-SUBJECTS DISTRIBUTION 

In the thought experiment of Lord and Novick, described above, each 

application of the test produces a sample value from a within-subject 

distribution. The independence between values from different draws is 

assured by the brain washing procedure which eliminates memory ef-

fects and by the assumption that the other influences, represented by 

the errors pi  are distributed independently. The true score pi  is de-

fined as the expectation of the resulting test scores and the variance of 

the within-subject distribution corresponds to the variance of the er-

rors. 

The utility of a within-subject distribution can be questioned for dif-

ferent reasons (cf. Borsboom, 2005; Holland, 1990): 

1. Despite the fact that the thought experiments provides a frequentist 

interpretation of the within-subjects distribution, a sampling process 

as described by the thought experiment cannot be performed in re-

ality. In order to get an estimate of the true score and the error vari-

ance, associated with the within-subject distribution, one has to re-

sort to parallel measures. 

2. The within-subject distribution is required only for the definition of 

the true score. It is completely irrelevant for the specification of the 

axioms and the classical test models of CTT. 

3. In addition, the within-subjects distribution is not required for the 

specification of the reliability construct that is based on the bet-

ween-subject distribution of the true scores. 

In summary, the within-subject distribution is required only for the de-

finition of the true score and completely irrelevant otherwise. How-

ever, as shown above, the true score concept is itself problematic and 

should be replaced by a latent variable conception that is not affected 

by these problems and, in addition, renders a within-subject distribu-

tion useless. It should also be noted that the concept of true score and 

the within-subjects distribution are unique to CTT. These constructs 

are not used in item response models and thus irrelevant for modern 

psychometrics. 

Before we turn to its modern conception let us summarize the main 

characteristics of CTT: 

1. CTT is concerned with the mean and covariance structure of test 

scores only. No exact distributional assumptions are made. There 

for the theory has also been termed weak true score theory in 

contrast to strong true score theory that makes precise distributional 

assumptions. 

2. The three main aspects of CTT are: 

(a) The decomposition of an observed test score of a person into a 

true and error score. The true score is defined as the expectation 
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of a with-subject distribution, and the variance of this distributi-

on corresponds to the variance of the error scores. 

(b) The axioms of CTT specify restrictions on the covariance struc-

ture of the true and error scores. However, these restrictions are 

insufficient for the identification of the model parameters (i.e. 

the variances and covariances of true und error scores). 

(c) The classical test models of CTT, the congeneric, -equivalent 

and parallel model, incorporate additional restricts that enable 

the identification of parameters in case of a sufficient number of 

tests being employed. 

3. The true score concept and the within-subject distribution of test 

scores are not useful and are better replaced by the latent variable 

conception. 

This presentation misses one important theoretical construct of CTT: 

the reliability of test of sums of test. A thorough treatment of this con-

struct is presented in Section 4.4. Previously to the discussion of this 

construct, as well as the construct of validity (cf. Section 4.5), CTT 

will be presented in the clothes of new psychometrics, as discussed in 

the classical paper of Jöreskog (1971). 

4.3 Representing CTT Models Using Linear Structural Equations 

In the following, CTT models are represented using linear structural 

equation models. The resulting models are also called confirmative 

factor analytic (CFA) or linear structural relation (LISREL) models 

(cf. Notation 4-4 on page 63). The CFA models lead to the same mo-

del implied covariance and mean structure as the CTT models describ-

ed above. They, thus, cannot be distinguished empirically from the 

models in the formulation given above. However, the interpretation of 

the models differs. Note also that the CFA models are but special cases 

of the general test model exhibited in Figure 3-1 (on page 24). 

Our presentation consists of two parts. First is a discussion of the ba-

sics of structural equation models. This is followed by the representa-

tion of the models of CTT by means of linear structural equations. 

4.3.1 Structural Equation Models 

Here is an explication of the concept if structural equations: 

 Concept 4-8: Linear and nonlinear structural equations 

(Mulaik, 2009; Pearl, 2009): 

 A structural equation is an equation for representing a causal 

relationship between a dependent variable y and a set of inde-

pendent variables: 1 2, , , px x x . A structural equation has the 

following general form: 

  1 2, , , py f x x x  (4-13) 
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 The independent variables 1 2, , , px x x  are regarded as 

causes, whereas the dependent variable is considered as the 

effect or outcome. 

 The symbol f() denotes a function whose precise form is not 

further specified. 

 In the case linear structural equations the equations take on 

the form of a multiple, linear regression equation: 

 
1 1 2 2 p py x x x         (4-14) 

 The regression coefficients 1 2, , , p    are also called struc-

tural coefficients or loading coefficients. They are free para-

meters that are estimated from the data. 

Structural equation models comprise a set of structural equations, with 

a single equation for each of the dependent variables: 1 2, , , ny y y . 

 

 

 

1

2

1 1 11 12 1

2 2 21 22 2

1 2

, , ,

, , ,

, , ,
n

p

p

n n n n np

y f x x x

y f x x x

y f x x x







 (4-15) 

Note that the equations for different dependent variables comprise 

(possibly) different sets of independent variables with (possibly) dif-

ferent numbers of independent variables [as indicated by the indices 

ip   1,2, ,i n ]. 

In the case of linear structural equations this amounts to a set of linear 

(regression) equations: 

1 1

2 2

1 11 11 12 12 1 1

2 21 21 22 22 2 2

1 1 2 2 n n

p p

p p

n n n n n np np

y x x x

y x x x

y x x x

         

         

         

 (4-16) 

Within a system of structural equations variables can be at the same 

time dependent and independent variables, i.e. a dependent variable 

can enter the equation of another dependent variable as an independent 

one. In this way, dependent variables may be linked together. 

 Notation 4-3: Order of indices 

 The order of the indices conforms to the following principle 

 
The first index is refers to the dependent variable and the se-

cond index refers to the independent variable. 
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Example: 34  denotes the structural coefficient of the fourth 

independent variable within the third equation, i.e., 

the equation with the third dependent variable 3y  

on the left-hand side of the equation. 
 

 Notation 4-4: Acronyms and abbreviations 

 
1. In the context of structural equation modeling the following 

acronyms are used: 

 SEM = Structural Equation Models / Modeling 
 LISREL = Linear Structural Relations 

 

The acronym LISREL refers, on the one hand, to the gene-

ral model developed by Karl Jöreskog, and, on the other 

hand, to a statistical program for estimating and testing li-

near structural equation models. 

 

2. For the representation of CTT models only linear structural 

equations are employed. For convenience, we shall use the 

notation structural equations to denote linear structural 

equations. 

As already noted, structural equation models are used for causal mo-

dels. The models can be best represented by means of causal diagrams. 

4.3.1.1 CAUSAL DIAGRAMS AND LINEAR CAUSAL MODELS 

Causal diagrams enable a convenient representation of the causal re-

lationships between a set of variables. 

 Concept 4-9: Causal diagrams: 

 A causal diagram is a graph consisting of vertices and edges: 

  Die vertices represent the variables. 

  Die edges represent (predominantly) causal relationships 

between variables. 

 A causal diagram is used to depict the causal structure of a set 

of variables, 

Figure 4-1 depicts the main components of a causal diagram that 

represents the causal relationships between different hidden and mani-

fest causal variables, respectively. 

The conventions and notations presented in context of the description 

of the general psychometric model (cf. Figure 3-1 on page 24) apply 

here as well (Here is a short repetition): 

 

1. The circles and rectangles represent variables denoted by 

the different letters. The variables of the causal model in 

Figure 4-1 are: 1 , 2 , 1 , 2 , X , 1Y  and 2Y . 
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The variables can be divided into two groups: 

 Unobserved (latent) variables are represented by circles 

and denoted by Greek letters: 1 , 2 , 1 , and 2 . 

 Observed (manifest) variables are represented by 

rectangles and denoted by Latin letters: X , 
1Y  and 

2Y . 

 
2. The arrows represent linear causal influences. The strength 

of the effect is not further specified. 

 

3. The double arrows represent correlations and covariances, 

respectively, between two variables. These correlations are 

not explained by means of causal influences. 

The absence of a double error symbolizes the absence of a 

correlation (i.e. the correlation and covariance, respectively 

between the two variables is assumed to be zero). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1: A causal diagram representing a causal structure. 

If the causal diagram is augmented by adding model parameters the 

diagram represents a causal model (and not only a causal structure). 

Figure 4-2 depicts a diagram of a linear causal model. 

 

 

 

 

 

 

X 
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Figure 4-2: The causal diagram of a linear causal model correspond-

ing to the causal structure represented by the diagram in 

Figure 4-1. 

The following classification of variables of a causal model is of great 

importance. 

 Concept 4-10: Exogenous vs. endogenous variables 

 Exogenous variables are variables whose mean and covari-

ance structure is not explained (or predicted) by the model. 

 Endogenous variables are variables whose mean and covari-

ance structure is explained (or predicted) by the causal struc-

ture. 

 The distinction between the two types of variables can be 

identified by inspection of the causal diagram: 

 Endogenous variables are exactly those variables to which at 

least one arrow points. In addition, no double arrow can be in-

cident at an endogenous variable. 

 In the model of Figure 4-2 there are two endogenous variab-

les: Y1 and Y2. 
 

  Comment 4-3: Endogenous variables, error variables, and the 

usage of double arrows 

 

In general, each (manifest or latent) endogenous variable has 

an error variable attached to it (cf. 1 and 2 in Figure 4-2). It 

represents all possible causes that are not represented by a va-

riable in the model exerting an effect on the endogenous va-

riable. 

 

The variance of the error variable represents the variation of 

the endogenous variable that is not explained by the variables 

exerting a causal influence on the endogenous variable. 

 

 

 

 

 

 

X 
   

  

 

1 1 
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The absence of incident double arrows (covariance arcs) at en-

dogenous variables results from the fact that the former repre-

sent unexplained covariances. Since the covariance structure of 

the endogenous variables is explained in the model by means 

of the causal influences of other variables in the model (as well 

as the covariance structure of these variables) there is no need 

to attach double arrows to endogenous variables. 

 

In order to represent an unexplained covariance between two 

endogenous variables a covariance arc is drawn between the 

error terms attached to the two endogenous variables. This re-

presents a residual covariance between two endogenous vari-

ables that cannot be explained by the model. 

The parameters of linear causal models can be partitioned into the fol-

lowing groups (see also the descriptions of the parameters of general 

psychometric model of Figure 3-1 on page 24): 

1. Variances of and covariances between exogenous variables that are 

not error variables: In general the Greek letter   (»phi«) denotes 

variances and covariances of exogenous variables. 

In the model of Figure 4-2 the variances of the three exogenous 

variables are denoted by 
2

X , 
1

2  and 
2

2  whereas the covariance 

between 1  und 2  is symbolized by 
1 2

 . The missing covariance 

arcs between X and 1  as well as X and 2  indicate that these 

covariances are assumed to be zero: 
1 2

0X X     . 

2. Variances of and covariances between exogenous variables that are 

error variables: In general the Greek letter  (»theta«) denotes 

variances and covariances of error variables. 

In the model of Figure 4-2 the variances of the two error variables 

are denoted by 
1

2  and 
2

2 . The missing covariance arc between 1  

and 2  indicate that this covariance is assumed to be zero: 
1 2

0   . 

3. Structural coefficients of arrows emanating from a manifest exo-

genous variable and ending in a (manifest or latent) variable: The 

Greek letter   (»gamma«) is used to denote this type of structural 

coefficients. 

In the model of Figure 4-2 the variable X is an observed exogenous 

variable exerting a causal influence on both 1Y  and 2Y  The 

associated structural coefficients have been denoted XY1
  and XY2

 . 

4. Structural coefficients of arrows from a latent exogenous variable 

to a manifest variable: The Greek letter   (»lambda«) is used to 

denote this type of structural coefficients. 
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In the model of Figure 4-2 the variables 1  and 2  are latent variab-

les exerting an influence on the observed variables 1Y  and 
2Y . The 

associated structural coefficients have been denoted 
1 1Y   and 

2 2Y  . 

5. Structural coefficients of arrows between two endogenous (latent or 

manifest) variables: The Greek letter   (»beta«) is used to denote 

this type of structural coefficients. 

In the model of Figure 4-2 the variables 
1Y  and 

2Y  are (manifest) 

endogenous variables with 1Y  exerting a causal influence on 
2Y . 

The respective structural coefficient is represented by the symbol

12YY . 

6. Structural coefficients of arrows pointing from error terms to mani-

fest variables: The structural coefficients are fixed to the value 1.0. 

 Notation 4-5: Structural coefficients 

 

The structural coefficients in linear structural equation models 

are regression weights, i.e. slope parameters of the linear re-

gression equation. 

 

The structural coefficients of arrows from a latent variable to 

an observed one (denoted by  ) are usually called loading 

coefficient or simply loadings. 
 

  Comment 4-4: Missing mean parameters 

 

Contrary to the general psychometric model in Figure 3-1 the 

model of Figure 4-2 does not contain mean parameters. This is 

due to the fact that in the following the models are used for 

modeling the covariance structure only, ignoring the mean 

structure for the moment. In Section 4.6 where the modeling of 

the mean structure is discussed the mean parameters, required 

for modeling the mean structure are added to the model. 

We have now discussed all components of a linear causal model. We 

next turn to the problem of recovering the linear structural equation 

from the diagrams of the causal model. 

4.3.1.2 DETERMINING THE LINEAR STRUCTURAL EQUATIONS FROM 

CAUSAL DIAGRAMS OF CAUSAL MODELS 

There is a simple method to get the system of linear structural equation 

from the diagram of a causal model. 

 Method 4-1: Recovering the system of linear structural equa-

tions from the diagram of a causal model 

 
To determine the system of linear structural equations perform 

the following steps: 

 

1. For each endogenous variable a linear equation is added. 

Thus, the structural equation model comprises as many 

equations as there are endogenous variables in the model. 
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2. The endogenous variable makes up the left-hand side of the 

equation. 

 

3. Any variable with an arrow pointing to the endogenous tar-

get variable enters the right-hand side of the equation. 

Each of these variables is multiplied by the structural co-

efficient associated with the arrow from the variable to the 

endogenous variable, and the sum of these products makes 

up the right-hand side of the equation. 

Note: We thus get a linear regression equation with the en-

dogenous variable as the dependent variable, and the vari-

ables with an arrow pointing to the endogenous variable 

being an independent variable. The structural coefficients 

make up the regression weights. 

 

4. The structural coefficients with a value of 1.0 are suppres-

sed in the equation. Thus only the variable enters the equa-

tion. 

The latter convention concerns error variables with an arrow 

pointing to the endogenous variable whose coefficient is 

usually 1.0 (see above). 
 

 Ex. 4-3: Determining the system of linear structural equation 

from the causal diagram: 

 Given: The causal model depicted in Figure 4-2 (page 65). 

 

The model comprises 2 endogenous variables: 
1Y  and 

2Y . The 

accompanying system of linear structural equations looks like 

this: 

 
1 1 1

2 2 2 2 1

1 1 1

2 2 1 2

Y X Y

Y X Y Y Y

Y X

Y X Y

       

         






 

Notice that linear structural equation model contains information only 

about the causal (or structural) relations but not about covariance 

structure of the exogenous variables. Consequently, the causal diagram 

of the model contains more information than the system of linear 

structural equations. 

4.3.1.3 PREDICTING AN OBSERVED COVARIANCE STRUCTURE USING 

LINEAR CAUSAL MODELS 

The system of linear structural equations represents the causal model 

of the scientist, that is, it implements her assumptions of how the 

observed data have been generated. In order to test the model 

empirically, predictions are derived from the model and compared 

with the data. The predictions are concerned with the covariance and 

mean structure of the endogenous variables (the variances, covariances 

and means). For the moment the mean structure will be ignored. 
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Let us now consider how predictions are derived from the linear 

structural equations and the covariance structure of the exogenous 

variables. To this end we assume that we have observed n endogenous 

variables 
1 2, , , nY Y Y  (e.g. the results of n test items). The covariance 

matrix of these n variables is a n n  matrix with the variances of the 

variables on the main diagonal and the covariances above and below 

the main diagonal: 

1 1 2 1

2 1 2 2

1 2

1 2

2

1

2

2

2

n

n

n n n

n

Y Y Y Y Y

Y Y Y Y Y

n Y Y Y Y Y

Y Y Y

Y

Y

Y

   
 
    
 
 
    

YΣ  

Since the covariance matrix is symmetric, i.e. 
i j j iYY Y Y   , the entries 

of the rows are identical to the entries of the columns. Thus, the first 

line of the matrix is identical the second one: 
1 2 2 1Y Y Y Y   , 

1 2 2 1Y Y Y Y   , 

…, 
1 1n nY Y Y Y   . 

As noted above (cf. Section 4.1), the covariance matrix YΣ  contains 

 1 2n n   unique variances and covariances. For each of these 

 1 2n n   unique variances and covariances a so called covariance 

equation has to be set up on the basis of the linear causal model. 

 Concept 4-11: Covariance equations: 

 A covariance equation is an equation with the to be modeled 

(or predicted) variance or covariance on the left-hand side. 

 The right-hand side of the covariance equation is made up by 

an expression that is a function of the model parameters of the 

causal model, i.e. the variances and covariances of the exo-

genous variables and the structural coefficients. 

 Consequently, a covariance equation represents the variances 

and covariances of the observed quantities in terms of the pa-

rameters of the causal model. 

The generation of the covariance equations proceeds in two steps: 

1. Reduction of the linear structural equations: Endogenous variables 

that appear on the right-hand side of the structural equations are 

replaced successively by the right-hand sides of the accompanying 

structural equation until there are no more endogenous variables on 

the right-hand sides of the linear equations (for details on the 

method of reducing linear structural equations (cf. Basics of covari-

ance algebra, Method 2-3). 
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2. The variances and covariances of the observed endogenous variab-

les are computed using the covariance algebra (cf. Basics of covari-

ance algebra). 

With respect to our causal model in Figure 4-2 (page 65) the two steps 

look like this: 

 Ex. 4-4: Specification of the covariance equations: 

 
Given: The system of linear structural equations for the causal 

model of Figure 4-2 (page 65): 

 
1 1 1

2 2 2 2 1

1 1 1

2 2 1 2

Y X Y

Y X Y Y Y

Y X

Y X Y

      

        





 

 
 

 

1. Reduction of the equation for Y2 by replacing the endogen-

ous variable Y1 by its equation and collection coefficients for 

each exogenous variable: 

  
2 2 1 1 2 1 1 1 2 2 2 12 1 2 1 2Y X Y Y Y X Y Y Y Y Y YY X                   

 
The other equation need not be reduced since there are only 

exogenous variables on the right-hand side. 

 
2. Computation of variances and covariances of the endogen-

ous variables. 

 

The model comprises two endogenous variables, By conse-

quence two observed variances:  1Var Y  and  2Var Y , as 

well as one covariance  1 2Cov ,Y Y  are to be explained. 

 
Using the simplified rules of covariance algebra (cf. Basics 

of covariance algebra, Method 2-4) results in: 

        
1 1 1

2 2

1 1 1Var Var Var VarY X YY X         

 

         

     

 

2 2 1 1 2 1 1 1

2 2 2 1

1 1 2 2 2 1

2 2

2 1

2 2

2 1 2

1 2

Var Var Var

Var Var Var

2 Cov ,

Y X Y Y Y X Y Y Y

Y Y Y

Y Y Y Y

Y X          

     

   





 



  

 

 

 
       

   

1 2 2 1 1 2 1 1 1

2 1 1 1 2 2

2

1 2 1

1 1 2

Cov , Var Var

Var Cov ,

Y X Y X Y Y Y X Y Y Y

Y Y Y Y

Y Y X

 

           

     

 

  
 

 

 Notation 4-6: Operator- vs. parameter notation: 

 

For the representation of the variances and covariances the 

operator notation has been employed (cf. Basics of covariance 

algebra). Using the parameter notation the equations look like 

this: 

 
1 1 1 1 1 1

2 2 2 2 2 2

Y Y X X Y          
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   

2 2 2 1 1 2 1 1 1 1

2 2 2 2 1 1 2 1 1 2 2 2 1 1 2

2 2
2 2 2

2 2 2 2 2 2

Y Y X Y Y Y X X Y Y Y

Y Y Y Y Y Y Y

           

          

 

      

 

 
 

1 2 1 2 2 1 1 2 1 1 1 1

2 1 1 1 1 2 2 1 2

2 2 2

2

Y Y Y X Y X Y Y Y X X Y Y Y

Y Y Y Y

            

    

 

   

 

In our example the parameters cannot be uniquely estimated from the 

observed data since there are many more free parameters than free data 

points. The model is thus not identified. 

  Comment 4-5: Modeling variances and covariances by means 

of structural equation models and models of 

classical test theory. 

 

Please note that our description of the modeling of variances 

and covariances by means of linear structural equations reflects 

the description of modeling of variances and covariances using 

the assumptions of the classical test models (cf. Ex. 4-1 [page 

47] and Ex. 4-2 [page 52]). 

 
This suggests that structural equation models can be used for 

modeling the classical test models. 

Following to this exposition of linear structural equation models we 

are now in the position to express the test models of CTT as structural 

equation models. 

4.3.2 Representing the Test Models of CTT as Linear Struc-

tural Equation (LISREL) Models 

It will now be shown that the test models of CTT can be expressed as 

linear structural equation models that result in the same predictions 

with respect to the covariance and mean structure (the mean structure 

will be ignored for the moment). It should be noted that linear struc-

tural equations and classical test model are based on different assump-

tions (cf. Section 4.3.3). However, the divergent assumptions do not 

result in different predictions with respect to the covariance and mean 

structure of the test items. 

4.3.2.1 REPRESENTATION OF THE GENERAL TEST MODEL OF CTT 

Let us consider once again the basic equation of CTT: 

i i iY     

Obviously, the equation can be conceived of as a simple linear struc-

tural equation if the latent variables i and i are regarded as variables 

exerting a causal influence on the observed test score. Figure 4-3 de-

picts the associated causal diagram. 
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Yi i i 
1 1  

 

 

Figure 4-3: A causal diagram of the structural equation representing 

the basic equation of CTT. 

The fact that the basic equation of CTT can be conceived of as a linear 

structural equation constitutes the foundation for the representation of 

the classical test models by means of linear structural equation 

(LISREL) models.  

Figure 4-4 exhibits the causal diagram of the general test model that 

incorporates the axioms of CTT. 

 Notation 4-7: LISREL Notation: 

 

The symbols for denoting latent variables and parameters has 

been changed to the notation used with linear structural equati-

on models, specifically: 

 
1. The symbol , denoting true score variables, has been re-

placed by the symbol  symbolizing latent constructs. 

 

2. The symbols 
2  and 

i j
  , representing the variance and 

covariance, respectively, of the true scores have been re-

placed by the symbols 
2

i  and ij . 

 
3. The symbol 

2 , denoting the variance of the error variab-

les have been replaced by 
2

i . 
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Figure 4-4: Causal diagram of the LISREL model representing the 

general classical test model with 4 test items implement-

ing the axioms of CTT. 

The causal diagram enables the determination of the linear structural 

equations. (cf. Method 4-1 on page 67). Application of covariance 

algebra (cf. Basics of covariance algebra) reveals that the model 

implied covariance matrix is exactly the same as the one resulting 

from using the axioms of CTT for imposing restrictions on (cf. Ex. 4-1 

on page 47) and applying covariance algebra. It turns (Exercise 4-6) 

out that the resulting structure of the implied covariance matrix is 

identical to that of the general classical test model (cf. Ex. 4-1 on page 

47). 

The causal diagram of the LISREL model implements the axioms of 

CTT in the following way: 

   0,Kov  ii
 is represented by the fact that the covariance arcs 

between circles representing error variables and those representing 

latent construct of the same observed variable are missing. 

   0,Kov  ji  is implemented by missing covariance arcs between 

circles representing error variables and circles representing latent 

constructs for different observed variables. 

   0,Kov  ji  is implemented by missing covariance arcs between 

circles representing error variables for different observed variables. 

Consequently, the axioms of CTT are implemented within the causal 

model by means of restrictions on specific model parameters: The re-
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levant covariances are restricted to be zero. In the causal diagrams this 

is represented by missing covariance arcs. 

This way of representation enhances the comprehensibility of the sig-

nificance of the axioms. This will become even more prominent in 

case of representing the three classical test models by means of causal 

diagrams. 

4.3.2.2 REPRESENTATION OF THE CLASSICAL TEST MODELS 

Let us now reconstruct the three classical test models by means of 

linear structural equation (LISREL) models. 

4.3.2.2.1 The model of congeneric tests 

Figure 4-5 depicts the LISREL model of the model of four congeneric 

tests. The figure reveals that the central aspect of the congeneric model 

consists in the fact that the four tests, Y1, Y2, Y3 and Y4, are measures of 

the same latent construct . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5: Causal diagram of the LISREL model of four congeneric 

tests. 

The figure also reveals that the four measures may measure the latent 

construct in the same way and my thus not be equally suitable for me-

asuring the latent construct. This is evidenced, one the hand, by the 

(possibly) different loading coefficients representing the strength of 

the causal influence that is exerted by the latent construct on the 

measures. 

On the other hand, the error variances may be different. The quality of 

a measure increases with the size of the loading coefficient and with a 

decrease of the error variance since in this case the measurement is 

predominantly influenced by the measured construct rather than by 

other sources of influence (represented by the error variable). Thus 
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measures with a great loading coefficient and small error variance are 

to be preferred. 

The loading coefficient of the first test has been fixed to 1.0. This fixes 

the scale of the latent variable. 

 Principle 4-1: Fixing the scale and location of latent con-

structs 

 

Latent variables have no scale (unit of measurement) and no 

location. By consequence the scale and the location of the la-

tent construct has to be fixed. 

 
Fixing the scale of latent constructs can be done in two 

different ways: 

 
1. By setting the variance of the latent variables to a fixed 

value (usually 1.0), or 

 
2. By setting the loading coefficient of an observed variable to 

a fixed value (usually 1.0). 

 
The location of latent variables can also be fixed in two 

different ways: 

 
1. By setting the mean of a latent construct to a specific value 

(in general 0). 

 

2. By setting the intercept parameter of one observed variab-

les associated with a latent construct to a specific value (in 

general 0). 

 
Comment: The fixing of the location is required only in case 

of modeling mean structure of tests. 

Similar as for the general test model of CTT it can be shown, using 

covariance algebra (Exercise 4-6), that the model implied covariance 

matrix is identical to that of the congeneric test model of (Ex. 4-2 on 

page 52). Thus both types of models lead to the same empirical predic-

tions. 

The model is identified if at least 3 tests are available for measuring 

the latent construct. In case of 4 or more test items the model can be 

tested statistically. 

4.3.2.2.2 The model of essential -equivalent tests 

Figure 4-6 depicts the causal diagram of the LISREL model represent-

ing the -equivalent test model. It results from the congeneric model 

by setting each of the loading coefficients to 1.0. 
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Figure 4-6: Causal diagram of the LISREL model of four -equiva-

lent tests. 

It thus implements additional restrictions on the parameters. These 

restrictions implement the assumption of an equal causal influence of 

the latent construct on the measured variables. 

As for the congeneric model, in the case of -equivalent test models, 

the LISREL model results in the same implied covariance matrix as 

the -equivalent test model (Exercise 4-6). 

Due to the additional restriction the model parameters are identified in 

case of three test items. In this case the model can also be tested which 

results from the fact that in case of 3 test items the model predicts the 

equality of the covariances between observed test items: 12 = 13 =
23, where 12 denotes the covariance between the first and second 

test, 13 represents the covariance between Items 1 and 3, and 23 

symbolizes the covariance between Test 2 und 3. The prediction of 

equal covariances can thus be tested by comparing the model predicted 

covariances with the observed ones. 

4.3.2.2.3 The parallel test model 

Figure 4-7 exhibits the causal diagram of the LISREL model imple-

menting the parallel test model. 

The diagram differs from that in Figure 4-6 only by the fact that the 

parameters representing the error variances are the same and are, thus, 

represented by the same symbol: 
2 2 2 2 2

1 2 3 4         . 

Again, the model implied covariance matrix conforms to that of the 

parallel model. The model requires two test for identification of the 
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two parameter 
2  and 

2 . With two test items the model can also be 

tested empirically since it predicts equal variances of the 2 test items. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-7: Causal diagram of the LISREL model of four parallel 

tests. 

The structural equation model depicted in Figure 4-7 reveals why pa-

rallel tests are perfectly equivalent measurement instruments: The cau-

sal influences of the latent construct and of the error are exactly the 

same for each test item. 

To illustrate the different models and how they may be used to draw 

conclusion about the structure of tests, let us consider an example of 

Jöreskog (1971) that analyzes data from Lord using structural equation 

models. 

 Ex. 4-5: Analyzing the structure of tests using structural equa-

tion models (Jöreskog, 1971): 

 Given: Four different vocabulary tests: 

 
X1, X2 represent two tests, consisting of 15 items each, that 

have been applied without time pressure. 

 
Y1, Y2 represent two tests consisting, of 75 items each, that 

have been applied under time pressure. 

 
The number of examinees was 649N . Tab. 4-1 contains the 

covariance matrix of the 4 tests. 
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 X1 X2 Y1 Y2 

X1 86.3979    

X2 57.7751 86.2632   

Y1 56.8651 59.3177 97.2850  

Y2 58.8986 59.6683 73.8201 97.8192 

Tab. 4-1: Covariance matrix of four tests (From Jöreskog, 1971). 

 Jöreskog investigated the following 4 hypotheses: 

 
H1: X1 and X2, as well as Y1 und Y2 are parallel. The two pairs 

are not congeneric, however. 

 
H2: X1 and X2, as well as Y1 und Y2 are parallel. The four test 

are congeneric. 

 
H3: X1 and X2, as well as Y1 und Y2 are congeneric. The four 

measures together are not congeneric, however. 

 H4: The four 4 tests are congeneric but not parallel. 

 Explanation of the logic behind the hypotheses: 

 The 4 hypotheses refer to 2 aspects of the tests: 

 

1. The first aspect concerns the question of whether the two 

speeded tests measure the same construct as the two tests 

without time constraints. The amounts to the question of 

whether the four tests are congeneric. 

 

The hypotheses H2 and H4 claim that the 4 tests are congen-

eric, thus assuming that both types of tests (with vs. without 

time constraints) measure the same construct. 

The hypotheses H1 and H3 do not assume that the two types 

of tests measure the same construct. 

 

2. The second concerns the question of whether the two sub-

tests X1, and X2 as well as Y1, and Y2 are parallel forms The 

hypotheses H1 und H2 assume that this is the case, whereas 

the hypotheses H3 and H4 assert that this not the case. 

Tab. 4-2: Assertions of the 4 hypotheses with respect to two aspects 

of the four tests: Identical construct and parallel subtests  

 Subtests parallel 

Identical construct 

(congeneric) 
Yes No 

Yes H2 H4 

No H1 H3 
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Tab. 4-2 depicts a cross classification of the two aspects and 

the claims of the four hypotheses. For example, hypothesis H2 

makes the strongest assertion that the four tests are congeneric 

and the two subtests are parallel forms. 

 

An elegant method to test the 4 hypotheses consists in the ge-

neration of model that conforms to the most general (i.e. the 

most unrestricted hypothesis). The other models are then based 

on this model by specifying relevant restrictions conforming to 

the hypothesis. 

 
The most general model is given by hypothesis H3. The associ-

ated SEM is shown in Figure 4-8. 

 
The model accompanying hypothesis H1 results from this mo-

del by specifying the following restrictions: 
 

YYY

XXX





21

21  and 
22

2

2

1

22

2

2

1

YYY

XXX




. 

 

 

The resulting model is identified by fixing the scale of the two 

latent variables. This is accomplished by fixing the variance 

parameters: 12 X
, and 12 Y

. 

 

The model representing H2 results from this model by adding 

the restriction 1  YX
. This corresponds to a perfect correla-

tion between the latent constructs 
X  and 

Y : 1  YX
. 

 

Comment: 

The model with variance and covariance parameters for the 

latent constructs all equal to 1.0 corresponds to the congeneric 

model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-8: SEM model for testing hypothesis H3. 

Y1 Y2 

 

1 1 

 

Y 

  

 

 

X1 X2 

 

1 1 

 

X 

  

  

 

 



 

 

Chapter  5: PTT 80 

 

 

 

 

 
Finally, the model for testing hypothesis H4 results from model 

H3 by adding the constraint 1  YX
 to the latter. 

 

Note: 

The equivalence 11   YXYX
 results due to the fact 

that the variance parameters have been fixed to 12 X
 and 

12 Y
. 

The previous exposition has demonstrated that linear structural equa-

tion models result in the same predications as classical test models in 

their original formulation. Both types of models are thus empirically 

not discriminable. There exist however differences with respect to 

their interpretation. These will be discussed in the following section. 

4.3.3 On the Difference between the Classical and the SEM 

Approach 

The structural equation modeling (SEM) approach differs from the 

classical approach in three respects: 

1. The SEM approach is based on a latent variable conception and not 

on the true score conception of classical test theory. As shown in 

Section 4.2.4.1, the true score approach comprises a number of cri-

tical aspects that are not shared by the latent variable approach. 

2. The SEM approach puts forward causal assumptions that are imple-

mented by means of the model equations. 

3. The SEM approach makes distributional assumptions whereas as-

sumptions of CTT are concerned with covariances and correlations 

only. Lord and Novick (1968) thus termed CTT as weak true score 

theory which they contrasted to strong true score theory that 

incorporates distributional assumptions (see Concept 4-1 on page 

45). 

In the following, the causal and distributional assumptions are con-

sidered more closely. 

4.3.3.1 TEST AND MEASUREMENT MODELS AS CAUSAL MODELS 

As mentioned above (Section 4.3.1), structural equation models serve 

for the modeling of causal relationships. Consequently, linear struc-

tural equation models conceptualize the test models of CTT as causal 

models. Here is a definition of test models from a causal perspective. 
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 Concept 4-12: Test model / Measurement model: 

 A test or measurement model is a causal model representing 

the measurement or test situation. It thus models how the ob-

served test scores evolved due to the causal influences of va-

rious causal factors. 

The model consists of the following components: 

(i) The set of observed measures (indicators, test items etc.). 

(ii) The set of relevant causal variables and their relationships 

exerting a direct causal influence on the observed measu-

res. 

(iii) A detailed specification of the causal relationship between 

measures and the causal variables exerting an influence on 

the former. 

Concerning the test models of CTT there are two different causal fac-

tors exerting an influence on the test items: 

1. The latent constructs  that are measured by the test item. A test 

item is can be a reliable and valid measure of the target construct it 

intends to measure only if the latent construct exerts a causal influ-

ence on the test item. By consequence, a higher score on the latent 

construct should result in a higher score on the measured variable. 

Note that there is no causal influence in the reverse direction, i.e., 

an increased test score does not lead to a higher score of the latent 

ability. It can only indicate that the ability might be high but never 

causally influence the latent construct. 

2. The error term  represents the residual causal influences resulting 

variation of the measurements that is considered as measurement 

error. The models assume that the causal factors represented by  
are uncorrelated with the target constructs measured by the test 

item. 

Linear structural equations enable the modeling of additional causal 

factors that as relevant influence factors. Specifically, multitrait-multi-

method (MTMM) models (cf. Figure 4-36) are used to model the 

effect of different methods used to measure latent traits, and latent trait 

state (LTS) models enable the modeling of situational influences by 

measuring latent traits on different occasions. These extensions of the 

classical models will not be treated here. 

4.3.3.1.1 Criticism of causal conceptualizing measurement models 

The conceptualization of test models as causal models has been criti-

cized by Zumbo (2007). He argues that the concept of causality is 

itself too problematic to be used as a foundational concept for defining 

measurement models and measurement concepts like validity. There 

are two main counter-arguments against this type of criticism: 
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(1) Modern science is full of problematic concepts that are neverthe-

less useful and commonly employed. Examples are the concepts 

of probability and the construct of a natural law. Up to now no 

one has developed a generally accepted conceptualization of these 

constructs. 

(2) Recent developments on causal networks and causal reasoning 

have resulted in a deep understanding of the concept of causality. 

(cf., e.g., Pearl, 2009). Specifically, Schurz and Gebharter (2016) 

argue that causality is a theoretical construct that results in empi-

rical testable predictions. Schurz and Gebharter specify condi-

tions, in terms of axioms, that enable the empirical testing of cau-

sal structures (see also Spirtes, Glymour, & Scheines, 1993). 

Due to these arguments, the criticism of Zumbo (2007) does not seem 

to be well-founded. Note however, that the predictions of structural 

models are not based on the causal interpretation of the SEM models. 

It has been noted above in the context of the discussion of the cogni-

tive function of theoretical constructs (cf. Section 2.1.3) that within a 

formalized theory theoretical constructs are but variables (or place-

holders) whose semantic content is irrelevant for the theoretical predi-

ctions of the theory. 

Similarly, the predictions of structural equation models are solely bas-

ed on the form of the structural equations, and the covariance structure 

of the exogenous variables. The predictions concerning the covariance 

structure of the observed test scores are computed from these two 

elements of the SEM model by means of covariance algebra. The as-

sumption of causality is, thus, not required for deriving the model pre-

dictions. 

The causal interpretation of measurement and test models, respecti-

vely, serves a similar cognitive function as theoretical constructs in 

general: They enable a better understanding and a coherent interpreta-

tion of the test models. The assumption that latent traits and latent 

states, as well as other aspects of the test situation, exert a causal influ-

ence on the observed test scores seems to be quite a natural and un-

controversial assumption. 

4.3.3.2 DISTRIBUTIONAL ASSUMPTIONS 

As mentioned above (Section 4.2.1), CTT is concerned with means, 

variances, and covariances (or correlations). There are no assumptions 

concerning the distributions of test scores, true scores, and errors. This 

renders CTT very general. However, as an unfortunate consequence, 

the empirical adequacy of the test models cannot be tested statistically. 

By contrast, linear structural equation model make use of distributi-

onal assumptions. Specifically, it is assumed that the latent abilities 

and the error variables conform to a (joint) multivariate normal distri-

bution. This enables one to perform statistical tests of the models (cf. 

Exercise 4-8). 
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It should be stressed however that the assumption of multivariate nor-

mality is not an inherent feature of linear structural equation models. It 

is but a convenient assumption that enables the efficient estimation of 

the models. 

This ends our discussion of the modeling of classical test models and 

performing test item analysis, respectively, using linear structural 

equation models. We now turn to the discussion of reliability that con-

stitutes probability one of the most important concepts of classical test 

theory. 

4.4 Reliability: Concept and Estimation 

The reliability of a test is one of the most important concepts of CTT. 

In this section we investigate this concept. Following to an exposition 

of the concept, we investigate how the concept is used in traditional 

approaches (Section 4.4.1). This is followed by a treatment of the reli-

ability of the unweighted sum of test scores of individual items (Sec-

tion 4.4.2). Finally, the concept of maximal reliability and the optimal 

weighting of test scores will be discussed (Section 4.4.3). 

The concept of reliability is based on the concept of the true score 

variance of a test. 

 Concept 4-13: True score variance 

 
The true score variance of a test corresponds to that variation 

of the test that is due to variation of the latent constructs. 

 Comments: 

 
1. The true score variance has to be distinguished strictly from 

the variance of the latent constructs. 

 

2. The true score variance concerns those variations of the 

measurement that are due to variations of the latent constr-

ucts. 

The concept of reliability can now be defined using the concept of the 

true score variance. 

 Concept 4-14: Reliability 

 

The reliability of a test is the proportion of the true score 

variance within the complete variance of the test scores. Con-

sequently, the reliability corresponds to the quotient of the 

true score variance and the variance of the test scores. 

The concepts of true score variance and reliability are theoretical con-

structs since they cannot be observed but have to be estimated on the 

basis of an underlying psychometric model. This sort of measurement 

is called model dependent measurement. By consequence the reliabili-

ty and its estimation is based on the correctness of the assumptions 

that are incorporated into the psychometric model. In case of the 
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model approximating the population poorly, the estimated reliabilities 

are usually biased. 

The following example exhibits the relevance of the concept of re-

liability for the measurement of latent constructs.  

 Ex. 4-6:  Significance of the concept of reliability: 

 
Given: The test scores of 2 examinees on an intelligence test: 

1021 Y  and 1052 Y . 

 

The test scores indicate that Examinee 2 might have a slightly 

higher value in the latent intelligence construct than Examinee 

1. However, in the light of existing measurement errors, one 

might question whether this conclusion is really justified. 

 
The variance of the two test scores is  

2

1 2 2Y Y . It is, thus, a 

function of the difference of the test scores. 

 

The validity of a conclusion from the observed test scores to 

the values of the underlying latent constructs depends on how 

the test scores were created. Let us consider to different extre-

me scenarios: 

 

(3) There was no measurement error present. By consequence, 

the variation of test scores (i.e. the difference between test 

scores) has been determined completed by the variation of 

the latent construct (i.e. the difference between the two 

values of the latent construct). The observed variance of 

test scores corresponds to the true score variance, and the 

reliability of the test is thus 1.0. 

 

(4) The observed difference was completely caused by me-

asurement error. The contribution of the variation of the 

true scores to the variation of the test scores is thus zero. 

Consequently, the true score variance, as well as the relia-

bility of the test, is zero. 

 

Obviously, a conclusion from the observed difference of test 

scores on the difference of the underlying constructs is perfec-

tly justified for the first scenario and completely unjustified for 

the second one. This illustrates the importance of the reliability 

with respect to inference of differences between the latent con-

structs on the basis of differences between observed test 

scores. 
 

The next example demonstrates the computation of the reliability of a 

single test item, assuming a simple psychometric model. 

 Ex. 4-7: Specification of the reliability of a test item: 

 Given: A simple measurement model (Figure 4-9): 
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Figure 4-9: Causal diagram of a simple linear psychometric model. 

 

The variance of the observed score Y can be partitioned into 

two variance components. This is easily demonstrated using 

covariance algebra: 

 

   

 

   

   

2

2

Var Cov ,

Cov ,

Cov , Cov ,

Var Var

Y Y Y

      

   

   

   

   

 

 

 
The first summand on the right-hand side represents the true 

score variance and the second summand the error variance. 

 Dividing both sides of the equation by  YVar  results in: 

 
 

 

 

 

2 Var Var
1

Var VarY Y

 
 

 
 

 

The first term on the right-hand side represents the proportion 

of the true score variance within the total observed variance of 

the test scores. The reliability of the test is thus: 

  
 

 

2 Var
Rel

Var
Y

Y

 



. (4-17) 

 

It can be demonstrated that, in the present case, the reliability 

of Y corresponds to the squared correlation between Y and the 

latent construct  (cf. Exercise 4-10): 

  
 

   

2

2 2

.

Cov ,
Rel

Var Var
Y Y

Y
Y R R

Y

    


 




. (4-18) 

The decomposition of the variance of a test score into the true score 

and error variance is unique as long as errors and latent constructs are 

uncorrelated. In this case the reliability of a test score can be computed 

using the estimated parameters resulting from a structural analysis of 

the test items. 

 
Method 4-2: Decomposition of the variance of an observed 

test score into true score and error variance: 

 
Given: The linear structural equation of the observed test 

score Y: 1 1 2 2 p pY              

 Assumption:  Cov , 0, for all  1, ,i i p   . 

 Y  
1  

 


1
2
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Figure 4-10: Measurement model for illustrating the decomposition 

of the observed variance into true score and error vari-

ance. 

 

The desired decomposition follows from the measurement mo-

del by means of covariance algebra using the assumption of 

the model. For the given model in Figure 4-10 the following 

decomposition is obtained: 

 

       
   

   

2 2 2

1 1 2 2

1 2 1 2 1 3 1 3

1 1
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n p
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Y
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        

    

  

   

  

 

 
The term  Var   represents the error variance. The sum of 

the other terms constitute the true score variance. 

 

Since  Cov , 0i   , for all i, there are no covariance terms 

including error variables and variables denoting latent con-

structs. The decomposition is thus unique. 

 

In case of  Cov , 0i   , for some of the i, the decomposition 

is not unique since it is unclear whether to assign these terms 

to the true score or to the error variance. In this case one could 

compute a lower bound of the true score variance and the 

reliability, respectively, by assigning each of these covariance 

terms to the error variance. 

 Parameter representation of the decomposition: 

 

Using the model parameters, shown in Figure 4-10, the de-

composition of the variance 
2

Y of Y can be represented by the 

model parameters: 
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1 

Y  1 

1 

p 

2 

 

 

 

2 

p 


2
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
𝑝
2
 


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
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
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Computation of the true score variance and reliability using 

matrices: 

 

A convenient way to compute the true score variance consists 

in the usage of matrices since the expression representing the 

true score variance: 

 

2 2 2 2 2 2

1 1 2 2

1 2 12 1 3 13 1 1,2 2 2

p p

p p p p 

       

           
 

 Can be computed by means of the matrix product: 

 λΦλ
T  , 

 where: 

 

1

2

p

 
 

 
 
 
  

λ  and 

2

1 12 1

2

21 2 2

2

1 2

p

p

p p p

   
 
   
 
 
    

Φ . 

 

λ  denotes the p1 column vector of loading coefficients and 

Φ  the pp covariance matrix of the latent constructs. The 

symbol T represents the operation of transposing a matrix or a 

vector. In the present case the column vector λ  is transformed 

to a row vector. 

 
The variance of Y is thus given by: 

2 2

Y    T
λ Φ λ  . (4-19) 

 Consequently, the reliability YY of the test Y is given by: 

 2YY

 
 

   

T

T

λ Φ λ

λ Φ λ 

, (4-20) 

 

Comment: 

The reliability can also be computed by means of the equation: 
2 2

2

Y
YY

Y

 
 



  (4-21) 

 This follows immediately from Equation (4-19). 

The following example demonstrates the computation of the reliability 

of a test using the matrix method. 

 Ex. 4-8: Computation of the reliability of a test: 

 Given: The measurement model of Figure 4-11: 
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Figure 4-11: Measurement model to demonstrate the computation of 

the reliability of a test Y. 

 
The vector of the loading coefficients , the covariance matrix 

of the latent constructs , and the error variance 
2 : 

 

0.1

0.6

0.3

0.2

 
 
 
 
 
 

λ , 





















24.2329.777.636.0

29.729.654.804.2

77.654.885.1608.4

36.004.208.444.1

Φ , and 
2 10.4  . 

 
Application of Equation 4-19 results in the variance of Y pre-

dicted by the model: 

 
 

177.24

4.10777.13

4.10

2.0

3.0

6.0

1.0

24.2329.777.636.0

29.729.654.804.2

77.654.885.1608.4

36.004.208.444.1

2.03.06.01.0

22















































 λΦλ
T

Y

 

 
Thus the true score variance is 13.777. The reliability of Y is 

given by: 

 
2

13.777
0.570

24.177
YY

 
   

   

T

T

λ Φ λ

λ Φ λ 

. 

Y 
1 

4 

2 

1 

3 

 

23.24 

6.29 

16.85 

1.44 

4.08 

2.04 

0.36 8.54 

6.77 

7.29 

10.4 

0.1 

0.6 

0.3 

0.2 
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 Comment on the usage of the model predicted variance of Y: 

 

The reliability was computed using the variance of Y predicted 

by the model and not by means of the observed variance of Y, 

i.e., the variance computed from the sample. If the model is 

correct the model predicted variance is a more efficient estima-

tor of the variance of Y and should thus be used. 

 

If, by contrast, the model is a bad approximation of the popula-

tion the estimated variances (and reliabilities) are, in general, 

biased and thus useless. 

Let us terminate this presentation of the concept of reliability by 

asserting the following four observations. 

1. The concept of reliability refers to the test and not to the theoretical 

construct to be measured. 

2. The concept of reliability is a population-based quantity, with vary-

ing values of the latent construct. Otherwise, the true score vari-

ance, and thus the reliability is zero. In this case, differences bet-

ween observed test scores cannot be explained by means of differ-

ences of the underlying latent constructs. 

3. The reliability of a test cannot be observed directly but can only be 

measured in a model dependent way. This process assumes that the 

assumptions incorporated in the model are (approximately) correct. 

4. The variance of the error is given by the following equation (cf. 

Exercise 4-11):      Var Var 1 RelY Y     . The square root of 

this quantity is called the standard error of measurement. 

4.4.1 Traditional Approaches to Measuring the Reliability of a 

Test 

There exist three closely related approaches for determining the reli-

ability of a test that do not require analysis of the structure of a test. 

 
Method 4-3: Traditional methods for measuring the reliabili-

ty of a test: 

 

1. Test-Retest Method: 

The same test is applied at different time points to the same 

subjects. The correlation between the test scores from the 

two applications is a measure of the reliability of the test. 

 

2. Alternative Test Versions: 

The test is available in two versions. The two versions are 

applied to different participants. The correlation between 

the test scores from the two versions is a measure of the 

reliability of the test (versions). 
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3. Test Halves: 

The whole test is split into two halves (e.g. even and un-

even test items). The two test halves are applied to different 

groups. The reliability of the test conforms to the corrected 

correlation coefficient using the Spearman-Brown formula: 

'

2

1
YY

r

r


 


, 

Where 'YY  denotes the reliability of the test and r symbol-

izes the correlation of the test scores from different halves 

(For details on the Spearman-Brown formula, see Concept 

4-15 on page 92). 

The Spearman-Brown formula is used since the whole test 

is double the length of the two halves. 

The three methods differ from the one described by Method 4-2 (page 

85) in two fundamental ways: 

1. The reliabilities are computed using the sample correlations and not 

model predicted quantities. 

2. Apparently, no model assumptions are required. 

Consequently, the determination of the reliability of a test using one of 

the three methods seems to contradict the claim that the reliability of a 

test can be measured in a model dependent way only. However, the 

impression of a model free measurement of reliability by means of the 

traditional methods is incorrect since these methods are based on the 

assumption that the repeated measures, test versions, and test halves, 

respectively, are parallel. The correlation coefficient and the Spear-

man-Brown formula are unbiased estimators of the reliability only in 

case of parallel tests (Exercise 4-13). 

Usually the assumption of parallel measures is not tested. Remember, 

that the parallel model predicts that the variances of the observed test 

scores are equal (cf. Section 4.2.3.4). 

The following examples demonstrate various possibilities of 

deviations from the parallel test model: 

 Ex. 4-9: Possible reasons for deviations from the parallel test 

model: 

 
Given: Three test models for modeling the structure of two 

tests (Figure 4-12): 

 

Model (a): 

This model represents a situation with test Y1 exerting a direct 

influence on test Y2. This may be the case with repeated appli-

cation of the same test due to memory effects: The examinee 

remembers her previous response. 
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Model (b): 

This model represents a situation where the covariance bet-

ween test Y1 and Y2 cannot be explained completely by the me-

asured construct since there is a second latent construct ξ ex-

erting an influence on both measures. This may be the case if, 

for example, a specific answer to a test item has a high social 

desirability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-12: Measurement model demonstrating possible deviations 

from parallel tests: (a) the first measurement exerts an 

influence on the second measurement, (b) the presence 

of a second latent construct ξ exerting an influence on 

both measures, and (c) the measurement concerns a 

transient state instead of a stable trait. 

 

Model (c): 

This model represents a situation where transient states, like 

emotional states, are measured at different time points (cf. 

Exercise 4-7). Consequently, different latent constructs are 

measured at different time points. 

In case of one of the models representing the measurement process 

correctly, the correlation coefficient is not an adequate estimate of the 

reliability of the two tests. 

Up to now we have discussed methods that apply to single tests or test 

items. In the following section the reliability of the sum scores of test 

items will be discussed. 

4.4.2 The Reliability of Sum Scores 

A common practice consists in computing the sum Y of the scores of 

the single test items 
1 2, , , nY Y Y : 

1 2 nY Y Y Y    . This raises the 

question of the reliability  YRel  of the sum score. 

 

(b) 

 

Y1 Y2 

2 2 

1 1 

1 1 

2 1 

(a) 

 

Y2 

2 2 

1 1 

1 1 

2 1 

1 

Y1 Y2 

2 2 

1 1 

1 1 

2 1 

2 

Y1 

(c) 

12 

 

   

ξ 

1 1 
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In the following, we first discuss the most commonly used procedures 

and coefficients, respectively: Spearman-Brown formula, coefficient  

(also called Cronbach’s ), and Guttman’s 2. Subsequently, the com-

putation of the reliability based on the analysis of the covariance struc-

ture of the test items is presented. 

4.4.2.1 TRADITIONAL MEASURES OF THE RELIABILITY OF SUM SCORES 

The traditional measures of the reliability of the sum of test scores can 

be computed using the (co-) variances and correlations, respectively, 

of observed test scores. Consequently, their usage is quite common. 

However, one should keep in mind that these estimates of reliability 

are also based on model assumptions that limit their usage. It is thus 

important to understand these limitations and the resulting biases of 

the estimates in case of violations of the model assumptions. 

 Concept 4-15: Spearman-Brown formula for increased test 

length: Reliability of the sum of m parallel tests 

 

Given: 

m parallel tests: 
1 2, , , nY Y Y . The reliability of a single item is 

  (since items are parallel the reliability is identical for all 

items). 

 
The reliability  YRel  of the sum 

1 2 nY Y Y Y     of the n 

items, is given by: 

  
 

Rel
1 1

n
Y

n




  
. (4-22) 

 Equation (4-21) is known as the Spearman-Brown formula. 

 Comment: 

 
The Spearman-Brown formula assumes that the test items are 

parallel since only in this case the items measuring the latent 

construct have the same reliability (assuming the classical case 

with loading coefficients being all of equal size). 

 
In case of violations of the assumption of parallel items the 

Spearman-Brown coefficient either overestimates or underesti-

mates the reliability of the sum of the items. Which case of 

bias obtains depends on the covariance structure. The same 

principle applies in case of coefficient  (cf. Principle 4-2 on 

page 105). 

The most commonly employed coefficient of reliability is coefficient 

 that is also called Cronbach’s .  
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 Concept 4-16: Coefficient  (Cronbach’s ): The reliability 

of the sum of m -equivalent tests 

 
Given: 

n -equivalent tests: 1 2, , , nY Y Y . 

 The reliability of the sum 1 2 nY Y Y Y     is given by: 

 
 

 

1 1

Cov ,

1 Var

n n

i j

i j
j i

Y Y

n

n Y

 


  




 (4-23) 

 or 

 

 

 
1

Var

1
1 Var

n

i

i

Y
n

n Y



 
 
    

  
 
 


 (4-24) 

 

Comment: 

If the n tests are parallel coefficient  is identical to the 

Spearman-Brown coefficient (Exercise 4-18). 

To obtain a better understanding of the equations underlying coeffici-

ent  consider the schematic representation of the covariance matrix of 

the test scores for the different tests (Figure 4-13). The matrix has been 

partitioned into three regions: The main diagonal contains the varianc-

es that are denoted by the letter V. The off-diagonal parts of the matrix, 

denoted by C, contain the covariances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-13: Schematic representation of the covariance matrix of 

the variables 1 2, , , nY Y Y : C = covariances, V = vari-

ances. 
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Ym 
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The nominator of coefficient  consists of the sum of the two regions 

denoted by C, and denominator contains the sum of all entries of the 

matrix. This quotient is multiplied by the factor  1n n . 

The equation of coefficient  can thus be written in schematic form: 

1

n C C

n C C V


  

  
. (4-25) 

The letters C and V represent the sum of the entries in the respective 

regions of the covariance matrix. 

The identity of the two different equation of coefficient  (cf. Equati-

ons 4-22 and 4-23) can be easily demonstrated: The variance  YVar  

consists of the sum of all entries of the covariance matrix (cf. Basics of 

Covariance Algebra). By subtraction of the sum of the variances (i.e. 

the sum of the entries in the main diagonal denoted by V in Figure 

4-13) from  YVar  one gets the sum of all covariances in the matrix. 

This leads directly to the expression of Equation 4-23, as the following 

derivation exhibits: 

1

1

1

1
1

n C C

n C C V

n C C V V

n C C V

n C C V V

n C C V C C V

n V

n C C V


  

  

  
 

  

  
   

     

 
   

   

 (4-26) 

  Comment 4-6: Cronbach‘s  and Stigler‘s law of eponymy 

 

The naming of Cronbach‘s  (instead of coefficient ) con-

forms to Stephen Stigler’s »law of eponymy« according to 

which scientific discoveries are usually not named after their 

discoverers. 

 

In the case of coefficient  it was Louis Guttman (1916-1987), 

who developed this coefficient, and not Lee Cronbach (1916-

2001) whose name it got. 

 

Guttman (1945) proved that coefficient  provides as lower 

bound on the reliability of the sum of test scores, assuming un-

correlated errors (a concise prove of this fact can be found in 

Lord and Novick, 1968, page 88-89). 
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The name coefficient  is due to Cronbach (1951). He proved 

that  from 2 n  tests is identical to the mean of the  values, 

where the mean is computed over the  values from all 

possible splits of the 2 n  item into two halves with n items 

each. All in all there are    
2

1 2 2 ! !n n   different such splits 

(for a simple proof of this fact, cf. Lord and Novick, 1968). 

 

Kuder and Richardson (1937) developed the formula of coeffi-

cient  for the special case of binary test items, i.e., items with 

two possible outcomes only. 

 Comment: 

 

As one might expect, Stigler‘s law of eponymy has been pro-

posed first by the sociologist Robert K. Merton (1910-2003), 

and not by Stephen Stigler (1941-) according to whom it is 

named. 

A further coefficient is Guttman‘s 2. This coefficient provides, in case 

of uncorrelated errors, also a lower bound on the reliability that is at 

least as good as the one given by coefficient : 

 Concept 4-17: Guttman’s 2: A lower bound of the reliability 

of the sum of m tests in case of uncorrelated 

errors (Guttman, 1945). 

 
Given: 

n tests: 1 2, , , nY Y Y  with uncorrelated errors. 

 
The reliability of the sum 1 2 nY Y Y Y     is always greater 

or equal to Guttman’s 2: 

 
   

 

2

1 1 1 1

2

Cov , Cov ,
1

Var

n n n n

i j i j

i j i j
j i j i

n
Y Y Y Y

n

Y

   
 

  
 

 

 

. (4-27) 

 Equivalently,  

  

 

 

 

2

1 1

1
2

Cov ,
1Var

1
Var Var

n n

n
i j

i ji
j ii

n
Y Y

nY

Y Y

 


 
 

   




 (4-28) 

 Comments: 

 
1. If the n tests are -equivalent coefficient  and Guttman‘s 

2 are identical: 2  (cf. Exercise 4-17 and Ex. 4-10). 
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2. Despite the fact that Guttman’s 2 can be computed using 

popular statistical software, like SPSS, Guttman’s 2 is 

used less often than the more common coefficient . 

This is somewhat surprising in the light of the fact that, in 

case of uncorrelated errors, Guttman’s 2 provides a better 

lower bound than coefficient . 

 
3. Coefficient  und Guttman’s 2 are based on the follow-

ing inequalities: 

 

The inequality underlying coefficient : 

   
1 1 1

1
Var Cov ,

1

n n n

i i j

i i j
j i

n  


 


    . (4-29) 

 

The inequality underlying Guttman‘s 2: 

   
2

1 1 1

Var Cov ,
1

m n n

i i j

i i j
j i

n

n  


  
 

    . (4-30) 

 (for further details, cf. Lord and Novick, 1968) 
 

 Ex. 4-10: Computation of coefficient  and Guttman‘s 2 for 

congeneric and -equivalent tests: 

 Given: The covariance matrix of 5 congeneric tests (Tab. 4-3): 

Tab. 4-3: The covariance matrix of five congeneric tests. 

 Y1 Y2 Y3 Y4 Y5 

Y1 3.62 1.80 0.36 4.32 1.08 

Y2 1.80 2.50 0.20 2.40 0.60 

Y3 0.36 0.20 2.02 0.48 0.12 

Y4 4.32 2.40 0.48 6.84 1.44 

Y5 1.08 0.60 0.12 1.44 3.24 

Tab. 4-4: The covariance matrix of five -equivalent tests. 

 Y1 Y2 Y3 Y4 Y5 

Y1 3.62 1.43 1.43 1.43 1.43 

Y2 1.43 2.50 1.43 1.43 1.43 

Y3 1.43 1.43 2.02 1.43 1.43 

Y4 1.43 1.43 1.43 6.84 1.43 

Y5 1.43 1.43 1.43 1.43 3.24 
 



 

 

Chapter  5: PTT 97 

 

 

 

 

 

Coefficient  is given by: 

 
 

1

2 1.8 0.36 4.32 1.08 0.2 2.4 0.6 0.48 0.12 1.445

4 2 1.8 0.36 4.32 1.08 0.2 2.4 0.6 0.48 0.12 1.44

3.62 2.5 2.02 6.84 3.24

0.730

n C C

n C C V


  

  

         
 

          

   



 

 Guttman‘s 2 is given by: 

 

 

 

 

 

 

 

2

1 1

1
2

2 2 2 2 2 2 2

Cov ,
1Var

1
Var Var

3.62 2.5 2.02 6.84 3.24
1

2 1.8 0.36 4.32 1.08 0.2 2.4 0.6 0.48 0.12 1.44

3.62 2.5 2.02 6.84 3.24

5
2 1.8 0.36 4.32 1.08 0.2 2.4 0.6 0.48

4

m m

n
i j

i ji
j ii

n
Y Y

nY

Y Y

 


 
 

   

   
  

          

   

        




 

 

2 2 20.12 1.44

2 1.8 0.36 4.32 1.08 0.2 2.4 0.6 0.48 0.12 1.44

3.62 2.5 2.02 6.84 3.24

0.787

 

          

   



 

 
Given: The covariance matrix of five -equivalent tests (Tab. 

4-4): 

 Computation of  and 2 results in the same value: 

 

1

5 1.43 5 4

4 1.43 5 4 3.62 2.5 2.02 6.84 3.24

1.43 25

1.43 20 3.62 2.5 2.02 6.84 3.24

0.764

n C C

n C C V


  

  

 
 

      




     


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   

 

2

1 1 1 1

2

2

2

Cov , Cov ,
1

Var

5
1.43 20 1.43 20

4

1.43 20 3.62 2.5 2.02 6.84 3.24

1.43 25 1.43 20

1.43 20 3.62 2.5 2.02 6.84 3.24

1.43 25

1.43 20 3.62 2.5 2.02 6.84 3.24

0

n n n n

i j i j

i j i j
j i j i

n
Y Y Y Y

n

Y

   
 

  
 

 

   


     

  


     




     



 

.764

 

We next tackle the problem of estimating the reliability of the sum of 

tests by using the methods of modern psychometrics. 

4.4.2.2 COMPUTATION OF THE RELIABILITY OF WEIGHTED SUM SCORES 

IN THE CONTEXT OF COVARIANCE STRUCTURE ANALYSIS 

The analysis of the covariance structure of the test items enables one 

to compute an unbiased estimate of the reliability of the weighted sum 

of the test items provided that the structural equation model represents 

the structure of the test items correctly. 

 Method 4-4: Computation of the reliability of a weighted sum 

of test scores using the estimated parameters of 

the confirmatory factor analytic model 

 

Given: 

The general linear psychometric model of first order with p 

latent constructs 1 2, , , p    and n test items 1 2, , , nY Y Y . 

Figure 4-14 depicts the causal diagram of the linear structural 

equation model (or confirmatory factor analytic model). 

 

Wanted: 

An estimator of the reliability of the weighted sum of the n test 

scores: 

1 1 2 2 n nY w Y w Y w Y        

 
The analysis of the covariance structure provides us with the 

following two matrices: 
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1. The model implied (n  n) covariance matrix of the ob-

served scores: 

1 1 2 1

2 1 2 2

1 2

1 2

2

1

2

2

2

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

n

n

n n n

n

Y Y Y Y Y

Y Y Y Y Y

n Y Y Y Y Y

Y Y Y

Y

Y

Y

   
 
    
 
 
    

Σ  

 

2. The (n  n) estimated covariance matrix of errors: 

1 2

2

1 12 11

2
2 21 2 2

2

1 2

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

n

n

n

n
n n n

  

   
 

     
 
 

     

Θ  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-14: Confirmatory factor analytic model of first order. 
 

 Notation 4-8: Hat symbol 

 

The hat symbol ^ indicates that the covariance matrices (and 

all its entries) are model based estimates that result from the 

structural analysis of the sample data. 
 

 
The computation of the reliability comprises the following 

three steps: 

 

1. Compute the true score variance (cf. Concept 4-13 on page 

83) of the weighted sum scores by means of the following 

matrix product: 

 

 

1 

 

 

  … 
 

  
 

 
 

 

1 
 

  

 
 

1 … 
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    ,
ˆˆˆVar Y    T

η w w Σ Θ w . (4-31) 

 

The symbols have the following meaning: 

 ,
ˆVar Yη w

 represents the estimated true score variance of 

the weighted sum of the observed scores. 

 
 1 2 nw w wT

w  denotes a row vector with the wei-

ghts of the weighted sum: 1 1 2 2 n nY w Y w Y w Y       . 

 

The symbol « T » represents the operation of transposing a 

matrix or a vector: exchanging the rows and columns of the 

matrix and vector, respectively. 

 
2. Compute the model predicted variance of the weighted sum 

of the observed scores: 1 1 2 2 n nY w Y w Y w Y       . 

   wΣw
T

w  ˆrâV Y . (4-32) 

 

3. The (estimated) reliability  YwlêR of the weighted sum is 

given by dividing the (estimated) true score variance by mo-

del predicted variance of the weighted sum scores: 

  
 

 Y

Y
Y

w

wη

w
râV

râV
lêR

,
 . (4-33) 

 

Comment: The true score variance  Ywη,râV  can be computed 

in an alternative way using the covariance matrix of the latent 

constructs and the matrix of loading coefficients. 

 
The analysis of the covariance structure provides us with the 

following two matrices: 

 
1. The estimated (p  p) covariance matrix of the latent con-

structs: 

 

1 2

2

1 12 11

2
2 21 2 2

2

1 2

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

p

p

p

p
p p p

   
 

    
 
 
    

Φ

  







, and 
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2. Die (n  p) matrix of loading coefficients: 

1 2

11 12 11

2 21 22 2

1 2

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

p

p

p

n
n n np

Y

Y

Y

   
 

    
 
 
    

Λ

  

. 

 

The estimated true score variance  Ywη,râV  of the weighted 

sum 1 1 2 2 n nY w Y w Y w Y        can be computed by 

means of the matrix product: 

  wΛΦΛw
TT

wη  ˆˆˆrâV , Y . (4-34) 

The following examples illustrate the method. 

 
Ex. 4-11: Computation of the reliability of the sum of test 

scores of five tests for a general factor analytic 

model: 

 
Given: The model shown in Figure 4-15 for modeling the 

covariance structure of 5 tests Y1-Y5. 

 
Wanted: The reliability of the sum 54321 YYYYYY   of 

the five tests. 

 
The single matrices resulting from the model look like this (cf. 

Figure 4-15): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-15: Structural equation model of five tests. 

 1. The model implied covariance matrix of observed scores: 

2  1 
1  

1 

1 

0.8 0.4 0.2 0.3 0.6 0.5 

0.25 

0.75 0.64 0.36 

1 1 

0.84 

1 

0.84 

1 

Y1 Y2 Y3 Y4 Y5 

1 2 3 4 5 
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























000.1300.0175.0050.0100.0

300.0000.1210.0060.0120.0

175.0210.0000.1110.0220.0

050.0060.0110.0000.1320.0

100.0120.0220.0320.0000.1

ˆ

5

4

3

2

1

54321

Y

Y

Y

Y

Y

YYYYY

Σ  

 2. The estimated covariance matrix of the errors: 

 

1 2 3 4 5

1

2

3

4

5

0.36 0 0 0 0

0 0.84 0 0 0
ˆ

0 0 0.84 0 0

0 0 0 0.64 0

0 0 0 0 0.75

 
 
 
 
 
 
  

Θ

    











 

 3. The estimated covariance matrix of the latent constructs: 

 

1 2

1

2

ˆ 1.00 0.25

0.25 1.00

  
 
 

Φ

 




 

 4. The estimated matrix of loading coefficients: 

 

1 2

1

2

3

4

5

0.8 0.0

0.4 0.0
ˆ

0.2 0.3

0.0 0.6

0.0 0.5

Y

Y

Y

Y

Y

 
 
 
 
 
 
  

Λ

 

 

 The weight vector looks like this: 

 

























1

1

1

1

1

w ,  11111T
w . 

 
The true score variance of the sum 54321 YYYYYY   is 

given by: 
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 

 

,
ˆˆˆVar

1.000 0.320 0.220 0.120 0.100 0.36 0 0 0 0

0.320 1.000 0.110 0.060 0.050 0 0.84 0 0 0

1 1 1 1 1 0.220 0.110 1.000 0.210 0.175 0 0 0.84 0 0

0.120 0.060 0.210 1.000 0.300 0 0 0 0

0.100 0.050 0.175 0.300 1.000

Y     
 

 
 
 
   
 
 
  

T

η w w Σ Θ w

1

1

1

.64 0 1

0 0 0 0 0.75 1

4.9

    
    
    
    
    
    
        



 

 
Using the alternative method for computing the true score va-

riance leads to the same result: 

 

 

 

,
ˆ ˆˆˆVar

0.8 0.0 1

0.4 0.0 1
1 0.25 0.8 0.4 0.2 0.0 0.0

1 1 1 1 1 0.2 0.3 1
0.25 1 0.0 0.0 0.3 0.6 0.5

0.0 0.6 1

0.0 0.5 1

4.9

Y     

   
   
      
          
      
   
      



T T

η w w Λ Φ Λ w

 

 

The model predicted variance is: 

 

 

ˆˆVar

1.000 0.320 0.220 0.120 0.100 1

0.320 1.000 0.110 0.060 0.050 1

1 1 1 1 1 0.220 0.110 1.000 0.210 0.175 1

0.120 0.060 0.210 1.000 0.300 1

0.100 0.050 0.175 0.300 1.000 1

8.33

Y   

   
   
   
     
   
   
      



T

w w Σ w

 

 

The estimated reliability of Y is therefore: 

 
 

 
,

ˆVar 4.9
ˆRel 0.588

ˆVar 8.33

Y
Y

Y
  

η w

w

 

 

Comment: 

By comparison, 0.500   and 2 0.513  . Thus both traditi-

onal coefficients underestimate the true reliability. 

The following example illustrates the effect of a differential weighting 

of test items on the reliability of the weighted sum. 

 
Ex. 4-12: Reliability of the weighted sum of test scores in the 

general factor analytic model (continuation of Ex. 

4-11): 

 

Given: 

 The model of Figure 4-15 on page 101; 

 The weight vector for weighting the five tests: 

 05.015.01.02.05.0T
w . 



 

 

Chapter  5: PTT 104 

 

 

 

 

 Wanted: The reliability of the weighted sum of the 5 tests. 

 54321 05.015.01.02.05.0 YYYYYY   

 

The estimated true score variance of Y is given by: 

 

 

,
ˆ ˆˆˆVar

0.8 0.0 0.50

0.4 0.0 0.20
1 0.25 0.8 0.4 0.2 0.0 0.0

0.5 0.2 .01 0.15 0.05 0.2 0.3 0.10
0.25 1 0.0 0.0 0.3 0.6 0.5

0.0 0.6 0.15

0.0 0.5 0.05

0.307

Y     

   
   
      
          
      
   
      



T T

η w w Λ Φ Λ w

 

 

The estimated variance of Y is given by: 

 

 

ˆˆVar

1.000 0.320 0.220 0.120 0.100 0.50

0.320 1.000 0.110 0.060 0.050 0.20

0.5 0.2 0.1 0.15 0.05 0.220 0.110 1.000 0.210 0.175 0.10

0.120 0.060 0.210 1.000 0.300 0.15

0.100 0.050 0.175 0.300 1.000 0.05

Y   

  
  
  
    
 
 
   

T

w w Σ w

0.456






 
 
 



 

 

Consequently, the estimated reliability of Y is given by: 

 
 

 
,

ˆVar 0.307
ˆRel 0.675

ˆVar 0.456

Y
Y

Y
  

η w

w

 

 

Comment: 

Obviously, the differential weighting of tests results in a signi-

ficant higher reliability (0.675), compared to the unweighted 

sum (0.588). The determination of the optimal weights that 

maximize the reliability will be treated in Section 4.4.3. 

As noted above, coefficient  is one of the most frequently used co-

efficients of reliability. In the following, some problems associated 

with the use of coefficient  and Guttman’s 2  are discussed. 

4.4.2.3 CRITICAL ISSUES CONCERNING COEFFICIENT  AND GUTT-

MAN’S 2 

Problems associated with the use of coefficient  and of Guttman’s 2  

are concerned with their interpretation. 

4.4.2.3.1 Over- and underestimation of the reliability by coefficient  

and Guttman’s 2 

The previous examples illustrated that coefficient  and Guttman’s 2  

can underestimate the true reliability of the sum of tests (cf. Ex. 4-11). 
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However, both coefficient  and Guttman’s 2  can also overestimate 

the true reliability. 

 Principle 4-2:  Overestimation and underestimation of the 

reliability by coefficient  and Guttman’s 2 

 
Coefficient  and Guttman’s 2 can overestimate or underesti-

mate the true reliability of the sum of the test items. Which 

case of bias obtains depends on the covariance structure: 

 

1. The true reliability is underestimated in the following situ-

ations: 

(i) The tests are congeneric. 

 
(ii) The tests are loading on more than a single construct 

and the errors are uncorrelated. 

 

2. In case of correlated errors both coefficients can lead to an 

overestimation of the true reliability. 

The overestimation is due to the fact that with correlated 

errors the covariance between the observed scores cannot 

be attributed entirely to the latent variables as assumed by 

 and 2. 
 

 Ex. 4-13: Overestimation of the reliability by  and 2: 

 Given: The covariance matrix of 5 tests (Tab. 4-5): 

 

The covariance matrix in Tab. 4-5 corresponds to the implied 

covariance matrix of observed scores of the model in Figure 

4-16 (Notice the covariance arcs between the error variables). 

 

Coefficient  and Guttman’s 2 computed from the covari-

ance matrix in Tab. 4-5 have the following values: .697   

and 2 .705  . 

Tab. 4-5: Covariance matrix of test scores for five test items. 

 Y1 Y2 Y3 Y4 Y5 

Y1 1.00 0.41 0.28 0.35 0.35 

Y2 0.41 1.00 0.47 0.15 0.49 

Y3 0.28 0.47 1.00 0.20 0.20 

Y4 0.35 0.15 0.20 1.00 0.25 

Y5 0.35 0.49 0.20 0.25 1.00 
 

 

The true reliability of the sum Y is however   510.Rel Y . 

Thus the two coefficients overestimate the correct reliability 

considerably. 
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Figure 4-16: Model underlying the data of Tab. 4-5. 
 

  
Comment 4-7: Over- and underestimation of the true reliabi-

lity by means of coefficient  and Guttman’s 2 

in practical applications 

 

I suspect that, in general, published values of coefficient  

overestimate the true reliability of the sum of the test scores. 

This supposition is based on the following consideration: 

 

Sums of test scores for which coefficient  is computed 

comprise usually at least 10-15 test items. It is quite improbab-

le that the covariance of these items can be explained by the 

existence of a single common latent construct exerting an in-

fluence on the tests. Rather, there remains a residual covari-

ance between test scores that is not explained by the latent con-

struct (as shown in Figure 4-16). 

In conclusion, the question of whether coefficient  and Guttman’s 2 

overestimate or underestimate the true reliability depends on the cova-

riance structure of the test scores. Thus an analysis of the covariance 

structure is required. This, again, exhibits the problems of traditional 

psychometric methods, i.e., of employing coefficients based on obser-

ved measures without further consideration of the assumptions under-

lying these coefficients. 

4.4.2.3.2 A possible erroneous interpretation of coefficient  and 

Guttman’s 2 as measures of homogeneity 

Coefficient  as well as Guttman’s 2 must not be interpreted as coef-

ficients of homogeneity, that is, the assumption that the tests are based 

on a single underlying construct. The following example illustrates 

that test score based on many underlying constructs are compatible 

with high valued of coefficient  and Guttman’s 2. 

Y1 

 

Y2 Y3 Y4 Y5 

 

    

1 1 1 

1 

0.7 0.3 0.4 0.5 0.5 

1 1 

0.51 0.2 0.91 0.84 0.75 0.75 
0.35 

0.34 
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 Ex. 4-14: Coefficient , Guttman’s 2, and the homogeneity 

of tests (Green, Lissitz & Mulaik, 1977). 

 Given: The model shown in Figure 4-17. 

 

The model assumes that the test scores of the 10 test items are 

influenced by 5 uncorrelated latent traits with each trait af-

fecting 4 tests. In addition, each test is affected by two latent 

variables only (e.g. variable Y4 is affected by the latent const-

ructs 1 and 5 only). Consequently, the 10 test items have no 

single underlying trait and are thus not homogenous. 

 

Tab. 4-6 exhibits the model implied covariance matrix. Co-

efficient  and Guttman’s 2, based on this covariance matrix, 

are relatively high:  = .829 and 2 = .848. 

Tab. 4-6: The implied covariance matrix of the model of Figure 4-17. 

 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 

Y1 1 0.49 0.49 0.49 0.49 0.49 0.49 0 0 0 

Y2 0.49 1 0.49 0.49 0.49 0 0 0.49 0.49 0 

Y3 0.49 0.49 1 0.49 0 0.49 0 0.49 0 0.49 

Y4 0.49 0.49 0.49 1 0 0 0.49 0 0.49 0.49 

Y5 0.49 0.49 0 0 1 0.49 0.49 0.49 0.49 0 

Y6 0.49 0 0.49 0 0.49 1 0.49 0.49 0 0.49 

Y7 0.49 0 0 0.49 0.49 0.49 1 0 0.49 0.49 

Y8 0 0.49 0.49 0 0.49 0.49 0 1 0.49 0.49 

Y9 0 0.49 0 0.49 0.49 0 0.49 0.49 1 0.49 

Y10 0 0 0.49 0.49 0 0.49 0.49 0.49 0.49 1 

Coefficient  and Guttman’s 2 are thus not sensible measures of the 

homogeneity of the test items. The latter can be assessed by fitting the 

congeneric model to the test items. If the fit of the model is reasonable, 

homogeneity of the items may be assumed. 

This example demonstrates again the problem of drawing conclusion 

using coefficients that are based on the observed test scores only, with-

out analyzing the structure of the tests. 

The present example exhibits, however, another problem of the two 

reliability coefficients:  = .829, as well as 2 = .848, are lower than 

the reliability of the single test items which is .98. The true reliability 

of the sum of the 10 test items is however .995 and thus higher than 

the reliability of a single test item. Thus,  and 2 not only underesti-

mate the reliability of the sum of the test items but also the reliability 

of the single items. 
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Figure 4-17: A model demonstrating the inappropriateness of coeffi-

cient  and Guttman’s 2 as measures of homogeneity. 

The latent variables are uncorrelated and each ob-

served variable is influenced by two latent variables. 

The loading coefficients are all equal to  = 0.7. 

4.4.2.4 PROBLEMS ASSOCIATED WITH THE RELIABILITY OF UNWEIGHT-

ED SUMS OF TEST ITEMS 

Coefficient  and Guttman’s 2 both presume the unweighted sum of 

test items. In the following, it will be demonstrated that the usage of 

unweighted sums may be associated with a number of problems. 

  Comment 4-8: Weights for the computation of weighted sum 

scores (lectures from elementary statistics): 

 

Principles of elementary statistics dictate that in pooling scores 

from different populations the latter should be weighted, where 

the precisions (i.e. the inverse variances) should be used as 

weights.  

Y1 

Y2 

Y3 

Y4 

Y5 

Y6 

Y7 

Y8 

Y9 

Y10 

1 

2 

3 

5 

4 

1 
1 

2 
1 

3 
1 

4 
1 

5 
1 

6 
1 

7 
1 

8 
1 

9 
1 

10 
1 

1 

1 

1 

1 

1 

0.02 

0.02 

0.02 

0.02 

0.02 

0.02 

0.02 

0.02 

0.02 

0.02 



 

 

Chapter  5: PTT 109 

 

 

 

 

 

In case of summing single sample values from different popu-

lations the values have to be weighted by the precisions 21 i . 

The symbol 2

i  denotes the variance of population i, from 

which the score was drawn. 

 

In case of pooling sample means the inverse squared standard 

errors of the means 2

iin   are used. The symbol in  denotes the 

sample size of the sample from which the mean was computed. 

 
In case of the population variances being unknown sample 

estimates of the variances are used. 

As shown in Ex. 4-12 (page 103) an unweighted sum of test items can 

result in a considerably lower reliability than the weighted sum. In ad-

dition, unweighted sums can violate requirements concerning the mo-

notony of the reliability of sums of items. 

 Principle 4-3:  Requirements concerning the monotony of the 

reliability of sums: 

 

1. The addition of reliable test items to an existing set of items 

should result in an increase of the reliability of the sum 

scores. 

 

2. Replacing, within a set of test items, an item with one of 

higher reliability should lead to an increased reliability of 

the sum of the test items. 

 

3. Reducing the correlation between two constructs of two 

tests should result in a decrease of the reliability of the sum 

of the tests. 

Li, Rosenthal, and Rubin (1996) demonstrated the violation of each of 

these requirements in case of using unweighted sums of test items.  

  Comment 4-9: Violation of Principle 4-3 in case of using co-

efficient  and Guttman’s 2: 

 

It was shown above in Ex. 4-14 (page 107) that the usage of 

coefficient  and Guttman’s 2 resulted in an estimate of the 

reliability of the sum of the 10 test items that was lower than 

the reliability of a single item. 

 

However, this result may be due to the fact that the two coeffi-

cients underestimate the true reliability and not to the fact that 

they are based on simple sums. However, the following ex-

amples, illustrate that using simple sums of tests items may be 

problematic per se. 
 

 Ex. 4-15: The reliability of the sum of reliable test items does 

not increase with test length. 

 Given: The -equivalent model of Figure 4-18. 

 The set of test items comprises two groups of items:  
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  Items Y1 and Y2 are of high reliability:  Rel .6iY  . 

 

 The residual items 51 ,, ZZ   are of low reliability only: 

 Rel .1iY  . 

 

Using the Spearman-Brown formula we get the reliability of 

the sum 
21 YYY   of the two items (note that Y1 and Y2 are 

parallel): 

 

 
 

 

Rel
1 1

2 .6
.75

1 2 1 .6

n
Y

n




  


 

  

. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-18: A model demonstrating that adding reliable test items to 

a set of already existing ones can result in a decrease of 

the reliability of the sum of the test items. 

 

Using coefficient  for computing the sum of the 7 test items 

5432121 ZZZZZYYZ   results in a lower reliability 

(Note that in the present case coefficient  is an unbiased esti-

mate of the reliability of the sum since the 7 test items are -

equivalent):  Rel .514Z   . 

 

The addition of 5 reliable items 521 ,,, ZZZ   to the items 1Y  

and 2Y  results in a decrease of reliability of the sum. This il-

lustrates the violation of the first requirement of Principle 4-3 

concerning the monotony of the reliability of sums. 

The following example demonstrates the violation of the second requi-

rement of Principle 4-3. 

 Ex. 4-16: The reliability of the sum of items does not incre-

ase if an item is replaced by one with a higher reli-

ability. 

 Given: The two models shown in Figure 4-19. 

Y1 Y2 Z4 Z5 

 

2 

1 

1 

Z1 Z2 Z3 

1 1 2 3 4 5 

1 1 1 1 1 1 

3 3 3 3 3 3 3 

6 6 81 81 81 81 81 
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The model on the left-hand side comprises two test items with 

reliabilities .6 and .1. For the reliability of the sum we get: 

  29.Rel  ZY . 

 

In the model on the right-hand side the item with reliability .6 

has been replaced by an item of higher reliability (.65), result-

ing in a lower reliability of the sum:   23.Rel  ZY , 22. . 

 

The reduction of the reliability of the sum for the model on the 

right-hand side is due to the fact that the new item exhibits a 

lower variance. By consequence, the item gets a lower weight 

with respect to the other items thus resulting in a decrease of 

the reliability of the sum. 

 

Note the reliability of the sum of the two items is considerably 

lower than the reliability of item Y. This, again, demonstrates a 

violation of the first requirement of Principle 4-3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-19: Two models demonstrating that the replacement of an 

item by a more reliable one can result in a decrease of 

the reliability of the sum. 

The next example demonstrates the violation of the third monotony 

requirement of Principle 4-3 (as well as of the first one). 

 
Ex. 4-17: The reliability of the sum of items need not in-

crease with the correlation between the latent vari-

ables. 

 Given: The two models of Figure 4-20. 

 
The model on the left-hand side corresponds to that of Figure 

4-19. Thus the reliability of the sum is:   29.Rel  ZY . 

 

In the model on the right-hand side the correlation between the 

latent constructs was reduced to .95. Importantly, the variance 

of the test item with reliability .60 is higher than the variance 

of corresponding item in the left figure. The reliability of the 

sum of the two items for the model on the right-hand side is: 

  34.Rel  ZY , (Coefficient 32. ). 

Y 

 1 

1 

Z 

1 2 

1 

3 3 

6 81 

Rel(Z) = .10 Rel(Y) = .60 

Y 

 1 

1 

Z 

1 2 

1 

1.97 3 

2.1 81 

Rel(Z) = .10 Rel(Y) = .65 
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Increasing the variance of the item with the higher reliability 

increases its contribution to the reliability of the sum. As a 

consequence, the reduction of the reliability of the sum due to 

the decrease of the correlation between the latent constructs is 

more than compensated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-20: Two models demonstrating that a reduction of the cor-

relation between two latent constructs, keeping the reli-

abilities of the single test items constant, can result in 

an increase of the reliability of the sum. 

The three previous examples illustrate strikingly the problems associ-

ated with usage of unweighted sum scores. This raises two questions. 

 

Questions: 

1. Is there a measure of reliability that does not violate 

the three monotony properties of Principle 4-3? 

 
2. How have the single test items to be weighted to get 

the optimal (maximal) reliability? 

It turns out that an optimal weighting of test items exists resulting in 

the maximal reliability that conforms to the monotony property of 

Principle 4-3. The computation of the maximal reliability is based on 

an analysis of the covariance structure of the test items. 

4.4.3 Maximal Reliability and the Optimal Weighting of Tests 

The maximal reliability of the weighted sum of test scores is obtained 

by finding those weights that maximize the reliability. Assume that an 

analysis of the covariance structure has been performed that resulted in 

estimates of covariance matrix of the latent constructs Φ̂ , the matrix 

of the estimated loading coefficients Λ̂ , and the covariance matrix of 

the errors Θ̂ . One can estimate the reliability of the weighted sum us-

ing weight vector w  by means of the matrix formula described above 

in Method 4-4 (on page 98): 

Y 

1 

1 

Z 

1 2 

1 

3 3 

6 81 

Rel(Z) = .10 Rel(Y) = .60 

1 2 1 

1 

Y 

1 

1 

Z 

1 2 

1 

3.88 3 

10 81 

Rel(Z) = .10 Rel(Y) = .60 

1 2 1 

.95 
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 
 

 
,

ˆ ˆˆˆVar
ˆRel

ˆˆVar

Y
Y

Y

   
 

 

T T
η w

w T
w

w Λ Φ Λ w

w Σ w
, (4-35) 

where ˆ ˆ ˆˆ ˆ   T
Σ Λ Φ Λ Θ  is the model implied covariance matrix. In 

order to find the maximal reliability one has to look for that weight 

vector that maximizes the expression in Equation 4-13. Note however 

that a weight vector 0w  that maximizes the reliability is not unique 

since each multiple of 0w  (say 0c w , with c being an arbitrary 

constant) will also be a weight vector the maximizes Equation 4-34. 

This is the case because the constant c appears in the nominator and 

denominator of Equation 4-34 and thus cancels. 

In this situation, one usually chooses the weight vector of length 1: 

0 1w , where 
2 2 2

0 1 2 nw w w   w  is the square root of the 

sum of the squared components of 0w . 

The maximal reliability as well as the weight vector that maximizes 

the reliability can be found by means of matrix methods that will be 

described below (cf. Method 4-6 on page 115). In case of the congene-

ric, -equivalent or parallel model the maximal reliability as well as 

the optimal weights can be represented by means of simple algebraic 

expressions. We thus treat this special case before tackling the more 

complex general case. 

 Method 4-5: Computation of the maximal reliability of the 

optimally weighted sum of congeneric, -equiva-

lent, and parallel test items and the associated 

optimal weights. 

 

Given: The congeneric, -equivalent or parallel test model of 

n test items: 1 2, , , nY Y Y  (cf. Concept 4-3, Concept 

4-6, and Concept 4-7). 

 
1. The maximal reliability of the optimally weighted sum of 

the test items is given by: 

  

22 2

1 2

2 2 2

1 2
max 22 2

1 2

2 2 2

1 2

1 1 1
Rel

1
1 1 1

n

n

n

n

Y

 
  

  


 
   

  

 (4-36) 

 
The symbols i   1,2, ,i n  denote the standardized 

loading coefficients. 

 
The standardized weights can be computed from the un-

standardized ones as follows: 
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i

j

i i

Y


  


  1,2, ,i n . (4-37) 

 
iY  denotes the standard error of test Yi, and 

j  denotes 

standard error of the latent construct on which Yi is loading 

with loading coefficients i . 

 

2. The optimal weights 1 2, , , nw w w  for computing the wei-

ghted sum 1 1 2 2 n nY w Y w Y w Y        of maximal reli-

ability are given by: 

 2

i
i

i

w





  1,2, ,i n . (4-38) 

 
i  denotes the unstandardized loading coefficient of test 

iY  and 
2

i  represents the associated error variance. 
 

 Ex. 4-18: Estimation of the maximal reliability of the weight-

ed sum of congeneric tests 

 
Given: The covariance matrix of 5 congeneric tests (Tab. 

4-3 on page 96). 

 
Wanted: The maximal reliability of the optimally weighted 

sum of the tests with the associated optimal weights. 

 
Tab. 4-7 depicts the relevant quantities involved in the compu-

tation of the maximal reliability and of the optimal weights. 

 Column 2 contains the unstandardized loading coefficients. 

 Column 3 contains the standardized loading coefficients. 

 
Column 4 contains the terms that enter the computation of the 

maximal reliability (cf. Equation 4-35). 

 
Column 5 contains the error variances required for computing 

the optimal weights. 

 Column 6 contains the non-normalized optimal weights. 

 Column 7 contains the normalized optimal weights. 

Tab. 4-7: Data for computing the maximal reliability and the opti-

mal weights. 

Test i  i 

2

21

i

i




 2

i  iw 
normal

iw


Y1 1.8 0.946 8.526 0.38 4.737 0.897 

Y2 1.0 0.632 0.667 1.50 0.667 0.126 

Y3 0.2 0.141 0.020 1.98 0.101 0.019 

Y4 2.4 0.918 5.333 1.08 2.222 0.421 

Y5 0.6 0.333 0.125 2.88 0.208 0.039 
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 The maximal reliability is given by: 

 

 

 

22 2

1 2

2 2 2

1 2
max 22 2

1 2

2 2 2

1 2

1 1 1
Rel

1
1 1 1

8.526 0.667 0.020 5.333 0.125

1 8.526 0.667 0.020 5.333 0.125

.936

n

n

n

n

Y

 
  

  


 
   

  

   


    



 

 The optimal (unstandardized) weight for test 
1Y  is given by: 

 
1

1 2

1

1.8
4.737

0.38
w


  


. 

 The other weights can be computed in a similar way. 

The maximal reliability (.936) is distinctly higher that the reliability of 

the simple sum of the test items (.821) as well as of the reliabilities due 

to coefficient  (.730) and Guttman’s 2 (.787). 

In case of test items loading on multiple latent constructs, the simple 

computational formulas of Method 4-5 for computing the maximal re-

liability and the optimal weights are no longer valid. In this case, the 

maximal reliability and the optimal weights can either be determined 

by means of optimization or using matrix methods. 

  Comment 4-10: 

 

The presentation of the procedures in Method 4-6 assumes that 

the reader has some specialized knowledge about matrices. 

This material is not required for understanding the stuff in 

subsequent chapters and may thus be skipped without loss of 

continuity. 
 

 Method 4-6: Determining the maximal reliability and the 

optimal weights of the weighted sum of test 

scores in the general linear latent trait model. 

 
Given: The general linear latent trait model of Figure 4-14 

(on page 99). 

 
Wanted: The maximal reliability of the optimally weighted 

sum of the tests with the associate optimal weights. 

 Method I: Direct maximization of the reliability: 

 

The method consists in maximizing the reliability given by the 

equation: 

 
ˆ ˆˆ

ˆRel
ˆ

Y
   


 

T T

w T

w Λ Φ Λ w

w Σ w
 

with respect to the weights of the weight vector w. 
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Comment: 

This method is inferior to the two methods presented below. 

However, it enables the determination of the maximal reliabi-

lity and the associated weights with programs, like Excel, that 

do not dispose of the matrix functions required for the other 

two methods (Excel has an optimizer, called the Solver, that 

can be used for performing the optimization). 

 Method II (Greene & Carmines, 1980): 

 
1. The maximal reliability conforms to the greatest eigenvalue 

of the following matrix: 

 1 2 1 2ˆ ˆˆ ˆ ˆ    T
Σ Λ Φ Λ Σ . (4-39) 

 The symbols have the following meaning: 

 Φ̂  denotes the estimated covariance matrix of the latent con-

structs, 

 Λ̂  denotes the estimated matrix of loading coefficients, 

 Σ̂  denotes the model implied covariance matrix. 

 

Comment: 

The exact form of these matrices is shown in Method 4-4 on 

page 98f. 

 

21ˆ 
Σ  denotes a matrix that may be conceptualized as the in-

verse square root of the matrix Σ̂  in the following sense: 
1 2 1 2ˆ ˆ ˆ   Σ Σ Σ I , 

where I is the identity matrix, i.e. a diagonal matrix with only 

1 in the main diagonal (all other entries are zero). 

 

The matrix 
21ˆ 

Σ  can be obtained by means of a singular value 

decomposition (SVD) of the covariance matrix Σ̂ . 

The function svd of the program R performs the SVD of a 

matrix. Similar functions exist for other software packages. 

 The SVD provides the matrix factorization: 

 T
VΔVΣ ˆ  

 The symbols have the following meaning: 

 V  denotes the matrix of the orthogonal eigenvectors of Σ̂ . 

 

Δ  denotes a diagonal matrix with the singular values (i.e. the 

eigenvalues of Σ̂ )  2 1,2, ,i i n   on the main diagonal in 

decreasing order. In case of Σ̂  being a proper covariance mat-

rix the singular values are all greater than zero: 
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2

1

2

2

2

0 0

0 0

0 0 n

 
 

 
 
 

  

Δ  

 Using the matrices resulting from the SVD the matrix 
21ˆ 

Σ  is 

computed by the equation: 

 T
VΔVΣ   2121ˆ , 

 where, 

 

1

1 2
2

1
0 0

1
0 0

1
0 0

n



 
 
 
 
 
 
 
 
 
  

Δ . 

 

Thus, one generates a diagonal matrix with the inverse of the 

square roots of the singular values on the main diagonal (note 

that in case of a proper covariance matrix the singular values 

are greater than zero and the inverses of their square roots are 

thus finite). 

 
2. The optimal weights associated with the maximal reliability 

are given by: 

 0

21

0
ˆ uΣw   . (4-40) 

 
The vector 0u  is the eigenvector associated with the greatest 

eigenvalue. 

 Background information on the method: 

 
The method is based on the following theorem (see, for ex-

ample, Schott, 2005): 

 
Let Σ  denote a (n  n) covariance matrix. The Rayleigh quo-

tient is defined as: 

 
ww

wΣw
T

T




 , 

 where w denotes an arbitrary (n  1) vector   0 . 

 The theorem states: 
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1. The maximal value of   corresponds to the maximal ei-

genvalue of Σ . 

2. The weight vector 0w  that maximizes   is the eigenvector 

that is associated with the maximal eigenvalue. 

 
In the actual case the following expression has to be maxi-

mized with respect to w: 

  
ˆ ˆˆ

ˆRel
ˆ

Y
   


 

T T

w T

w Λ Φ Λ w

w Σ w
 

 

Unfortunately the right-hand side of the equation is not a 

Rayleigh quotient (because of the denominator). 

We thus define w in terms of the vector u as follows: 

 uΣw   21ˆ  (4-41) 

 
Consequently, inserting the right-hand side of 4-37 into the 

equation of the reliability we get: 

 

 

1 2 1 2

1 2 1 2

1 2 1 2

ˆ ˆˆ
ˆRel

ˆ

ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ

Y

 

 

 

   


 

     


   

     




T T

w T

T T

T

T T

T

w Λ Φ Λ w

w Σ w

u Σ Λ Φ Λ Σ u

u Σ Σ Σ u

u Σ Λ Φ Λ Σ u

u u

 (4-42) 

 
The transition to the last line is based on the identity (already 

presented above): IΣΣΣ   2121 ˆˆˆ . 

 

The expression in the last line is a Rayleigh quotient. Thus, the 

maximal eigenvalue of the matrix 
1 2 1 2ˆ ˆ    T

Σ Λ Φ Λ Σ  cor-

responds to the maximal reliability (according to the theorem 

presented above). 

 

Let 0u  denote the eigenvector associated with the maximal ei-

genvalue, then we get the optimal weight vector 0w  by means 

of the transformation (cf. Equation 4-40): 

 0

21

0
ˆ uΣw   . 

 Method III (Li, 1997): 

 1. Determine the greatest eigenvalue max  of the matrix: 

 1 2 1 2ˆ ˆ ˆ ˆˆ    T
Θ Λ Φ Λ Θ . (4-43) 

 
Θ̂  denotes the estimated covariance matrix of the errors (the 

other symbols have the same meaning as previously). 

 2. The (estimated) maximal reliability is given by: 
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 max

max

1
ˆRel

1 1


 
. (4-44) 

 3. The optimal weights are given by: 

 
1 2

0 0
ˆ  w Θ u , (4-45) 

 
where 0u  is the eigenvector associated with the maximal ei-

genvalue max . 

 

Comment: 

At first sight Method III seems more involved than Method II 

since it requires the additional step (4-43) for computing the 

maximal reliability. 

 

However the method is computationally less involved in case 

of the covariance matrix of errors Θ̂  being a diagonal matrix, 

i.e. there are no correlated errors. In this case, 1 2ˆ 
Θ  is simply 

a diagonal matrix with the inverse standard errors of the error 

variables on the main diagonal. This spares the complicated 

matrix factorization (for computing 
1 2ˆ 

Σ ) required with Meth-

od II. 
 

 Ex. 4-19: Maximal reliability in the general test model: 

 Given: The model of Figure 4-15 (on page 101). 

 

The maximal reliability of the weighted sum of the 5 tests is 

.687 (by comparison, the reliability of the unweighted sum is 

.588). 

 

The optimal weights (normalized) are: 

w1 = 0.934, w2 = 0.200, w3 = 0.174, w4 = 0.194, and w5 = 

0.138. 

 
Each of the three methods, described above, leads to the same 

result. (Exercise 4-26). 

It will be shown next that the maximal reliability meets the monotony 

requirements of Principle 4-3 (page 109). 

 Ex. 4-20: The maximal reliability meets the monotony 

requirements of Principle 4-3: 

 

1. Concerning Ex. 4-15 (page 109), the maximal reliability of 

the sum 5432121 ZZZZZYYZ   is given by: 

 max

.60 .10
2 5

1 .60 1 .10Rel .78
.60 .10

1 2 5
1 .60 1 .10

  
  

   
 

 

 
This value is higher than the (maximal) reliability .75 of the 

sum of the first two items alone. 
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Comment: 

Since the first two items are parallel they receive the same 

weight. Consequently, the maximal reliability equals the re-

liability of the (unweighted) sum of the items. 

 

2. Concerning Ex. 4-16 (page 110), the maximal reliability of 

the model on the left-hand side of Figure 4-19 (page 111) 

[the model with the item of lower reliability] is given by: 

 max

.60 .10

1 .60 1 .10Rel .62
.60 .10

1
1 .60 1 .10


  

 
 

. 

 

For the model on the right-hand side of Figure 4-19 [the 

model with the item of higher reliability] the maximal reli-

ability is: 

 max

.65 .10

1 .65 1 .10Rel .66
.65 .10

1
1 .65 1 .10


  

 
 

. 

 
Thus the combination of test items with a test item of higher 

reliability results in a higher maximal reliability. 

 

3. Concerning Ex. 4-17 (page 111), the model with perfectly 

correlated latent constructs has a higher maximal reliability 

( 617.Relmax  ) than the model with an imperfect correlati-

on of .95 between the latent constructs: 616.Relmax  . 

In conclusion, the maximal reliability with optimally weighted sum of 

test items is, in every respect, superior to the reliability of the unwei-

ghted sum of the items. However, the computation of the maximal 

reliability presupposes an analysis of the structure of the test items. 

This ends or detailed treatment of the concept of reliability. We, now, 

turn to the second important concept for assessing the quality of a test. 

4.5 Validity: Concept and Estimation 

The problem of validity is that of whether a test 

really measures what it purports to measure, […] 

Kelley (1927, page 14) 

4.5.1 Introduction 

The concept of validity is the second important construct of CTT for 

assessing the quality of tests. Despite the intuitively appealing charac-

terization given by Kelley (1927) [cf. the citation above], there has 

been (and still remains) a great deal of confusion and misunderstand-

ing that surrounds the concept of validity. This was in part due to a 

paper of Cronbach and Meehl (1955) that can be seen as a milestone in 

the attempt to clarify the concept of validity. However, their concept 
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of construct validity was not well understood by the scientific com-

munity (Kane, 2001). Moreover, the concept of construct validity has 

also become under criticism by proponents of an empiristic view of 

science that questioned the utility of theoretical constructs in psycholo-

gy (cf. Bechtoldt, 1959). 

An additional source of confusion is the proliferation of different mo-

difiers associated with the concept of validity, to name just a few: 

construct, incremental, predictive, convergent, discriminant, criterion-

related, concurrent, criterion, factorial, construct-related, structural, 

content, and consequential. (cf. Newton & Shaw, 2012: Table 1 on 

page 306). Because of this inflation of validity constructs Newton and 

Shaw (2012) propose to replace the whole notion of validity by ano-

ther one: quality. 

The present approach is based on the distinction between empirical 

and theoretical validity that was proposed by Lord and Novick (1968, 

Chapter 12). According to this distinction incremental, predictive, cri-

terion, criterion-related, and concurrent validity belong to the cate-

gory of empirical validity, whereas, convergent, discriminant, factori-

al, construct-related, structural, and content validity may be conceived 

of as members of the class of theoretical validity (The concept of con-

sequential validity is not regarded as a useful validity concept for 

CTT, at all). 

The differentiation between empirical and theoretical validity is based 

on the observation that the former, contrary to the latter, does not re-

quire the consideration of theoretical constructs. Thus, the distinction 

reflects the one already observed in the discussion of reliability: Esti-

mates of validity based on observed scores versus theory (or model) 

dependent estimates. 

The distinction between empirical and theoretical validity also entails 

that the statement of Kelly (1927), cited above, refers to different as-

pects in different contexts: In case of empirical validity it refers to the 

relationship between a test score and an empirical criterion (measure). 

By contrast, in case of theoretical validity the statement refers to the 

relationship between a test score and a theoretical construct the test in-

tends to measure. 

Let us now take a closer look at the two basic conceptions of validity 

starting with the concept of empirical validity. 

4.5.2 Empirical Validity: The Classical Conception of Validity 

Empirical validity can be seen as the classical conception of validity. 

This is evidenced by the fact that Lord and Novick’s (1968) classic 

book on test theory devotes nearly the whole chapter on validity 

(Chapter 12 of their book) to empirical validity with only a short dis-

cussion of theoretical validity at the end of the chapter. 
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Empirical validity is concerned with the relationship between observed 

test scores and a criterion without taking into account the latent con-

structs and relationships. Consequently, the computation of validity 

coefficients does not require model assumptions and theoretical consi-

derations. Rather, validity coefficients are based on correlation and 

regression methods, respectively, involving observed scores. In fact, 

the different types of empirical validity coefficients can be based on 

regression methodology, with a criterion or standard of comparison 

being regressed on observed test scores. The different labels and modi-

fiers are but different names of essentially the same thing, specifically: 

 Criterion and criterion-related validity, respectively, is concerned 

with the correlation between a test score Y and a criterion C. The 

associated correlation coefficient  Corr ,Y C  has been termed vali-

dity coefficient. Equivalently, the standardized regression coeffici-

ent that results from regressing the criterion C on the test score Y 

can be computed. 

 Predictive validity refers to how well specific tests scores are able 

to predict future performance (= the criterion). Thus, in this case, 

the criterion will be measured in the future. The multiple correlation 

coefficient between the criterion and the different test used as pre-

dictors (R or its square R2) is used as the measure of validity. 

 By contrast, in case of concurrent validity, test scores and criterion 

are measured at the same time. Again, R or R2 can be used as a 

coefficient of concurrent validity. 

 Finally, incremental validity refers to the increase of predicted va-

riance in the criterion by adding a specific test to a set of predictors. 

The difference between R2 with the test included and R2 without the 

test  2 2

with test without testR R  can be used as a measure of incremental 

validity. 

Measures of empirical validity are useful in situations where the objec-

tive does not consists in the measurement of latent constructs. Typical 

instances are admission tests for screening candidates applying for 

specific academic studies, like law or medicine. The main goal of this 

type of tests consists in selecting the candidates with the highest pro-

bability of success during the academic study. 

If a test is intended to measure latent constructs empirical measures are 

problematic as the following example demonstrates. 

 Ex. 4-21: Validity coefficients and the measurement of latent 

constructs: 

 Given: The model of Figure 4-21. 
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Variable  denotes the target construct to be measured 

(e.g.  = social intelligence) and  represents another 

construct exerting an influence on the test scores Y as 

well as on the criterion C. (e. g.  = verbal abilities). 

 
The correlation between Y and C is:  Corr , 2 3Y C   (which 

can be shown by means of covariance algebra). 

 

However, only half of the observed covariance between Y and 

C is due to the fact that both C and Y are measures of the latent 

target construct  (the residual covariance is due to the influ-

ence of ). 

 
Even in case of the target construct  exerting an influence on 

neither Y nor C the observed correlation between them was ½. 

 
On the other hand, controlling for  (if this were possible) 

reduces the correlation between Y and C to ½. 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 4-21: Measurement model including the test Y and the cri-

terion C.  denotes the target construct to be measured 

by Y and C.  represents another latent construct that 

exerts an influence on both measures. 

This example demonstrates two problems of the empirical validity 

estimates in the context of the measurement of latent constructs. 

1. The empirical validity coefficient does not provide direct informati-

on about whether Y and C are gauging the same target construct . 

2. The empirical validity coefficient does not give direct information 

about the relationship between the target construct  and the mea-

sure Y (In the present case this correlation is 1 3 ). 

In conclusion, empirical validity coefficients do not provide direct in-

formation about the structure of latent constructs and their relation-

ships to the observed measures. This limits their utility for drawing 

conclusion with respect to latent variable models. This requires the 

consideration of the concept of theoretical validity. 

 

Y C 

Y 

 

C 

1 1 

 

 

 
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4.5.3 Theoretical Validity and Latent Variable Models 

The definition of Kelley (1927) given at the beginning of this section 

(that a test is valid if it measures what it purports to measure) makes, 

in case of the measurement of theoretical construct, an assertion con-

cerning the relationship between the theoretical construct and the mea-

sure. 

The idea of Kelley has been made more concrete by Borsboom, Mel-

lenbergh, and Van Heerden (2004). 

 Concept 4-18: Validity of a Test (Indicator, Measurement) 

(Bollen, 1989; Borsboom, et al., 2004): 

 

A test is valid, if the systematic variation of the test scores is 

due to variations of the target construct the test intends to me-

asure. 

 

Thus, the validity of a test corresponds to the direct structural 

(causal) relationship between the latent construct and the 

test). 

 

Comments: 

1. The true score variance is a measure of the systematic vari-

ation of the test scores (mentioned above). 

2. The validity of a test is one aspect of the more general con-

cept of construct validity discussed below. 

The following example illustrates the basic idea. 

 Ex. 4-22:Validity of a test 

 

Given: 

1. The target construct : Emotional intelligence; 

2. A test Y for measuring ; 

3. Another construct : Social competence. 

 
Figure 4-22 depicts two possible measurement models repre-

senting the relationships between the variables. 

 

In model (a), on the left-hand side, the test is affected by the 

target construct only. Consequently, the complete systematic 

variation in Y is due to variation of the target construct . 

 

By contrast, for model (b), on the right-hand side, the test 

scores are affected by both constructs. This limits the validity 

of the test as a measure of . 

 

Note that the reliability of Y may be higher in model (b) than 

in (a). This is due to the fact that the reliability is concerned 

with the total systematic variation. No distinction is made bet-

ween the various sources that contribute to the total systema-

tic variation (or true score variance). 

The definition of a valid test (of Concept 4-18) refers to the relation-

ship between the latent target construct and the test that is used to mea-

sure this construct. 
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Figure 4-22: Two measurement models: According to model (a) Y is 

a valid test of the target construct ; Concerning model 

(b), Y is not or only partially valid. 

The concept of construct validity of Cronbach und Meehl (1955) 

extends the notion of the validity of a test. According to this conceptti-

on not only the relationship between the latent construct and the mea-

sure should be taken into account but all relevant relationships bet-

ween the entities of a measurement model. Specifically, the following 

relationships have to be specified correctly in case of construct validity 

being present: 

1. The relations between latent constructs; 

2. The relations between latent constructs and measures; 

3. The relations between the measures. 

The concept of construct validity amounts to the correct specification 

of a measurement model. 

 Concept 4-19: Construct Validity 

(Cronbach and Meehl, 1955): 

 

Construct validity is present, if the measurement model that 

represents the measurement situation is (approximately) cor-

rect (cf. Concept 4-12 on page 81). In this case, conclusions 

about the test, drawn on the basis of the measurement model, 

are valid. In addition, estimates of various quantities (e.g. esti-

mates of reliability and other relevant parameters) are unbias-

ed. 

 

 

1 

Y 

 

  

  

 

 

(b) 

 

 

1 

Y 

 

  

 

 

 

(a) 
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Comment: 

Note that this also excludes the presence of systematic biases 

due to influences that are not represented in the measurement 

model since in this case the model would not be correct. 

The following example exhibits the close relationship between violati-

ons of construct validity and erroneous measurement models. 

 Ex. 4-23: Construct validity and erroneous measurement mo-

dels 

 
Given: A model representing the personality construct of neu-

roticism (Figure 4-23). 

 
According to the model the construct of neuroticism is made 

up of various facets (cf., John & Soto, 2007): 

 

The facets anxiousness and depression require no further ex-

planation. The facet hostility refers, on the one hand, to the 

own behavior, and, on the other hand, to the interpretation of 

the behavior of other people (i.e. a tendency to interpret other 

peoples’ behavior as hostile). The facet impulsivity refers to a 

propensity to act precipitously and in a reckless way, for ex-

ample in stressful situations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-23: Facets of the personality construct of neuroticism. 

 
The lowest level represents different tests, denoted by the let-

ters A, D, H, and I, for measuring the single facets. 

Neuroticism 

Anxiousness Depression Hostility Impulsivity 

A1 A2 D1 D2 D3 H1 H2 I1 I2 I3 

1 2 3 4 

1 2 3 4 5 6 7 8 9 10 
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Assume that a researcher uses a single test only for measuring 

each facet since she assumes that there exists only a single 

construct thus ignoring the sub-constructs. She assumes the 

model shown in Figure 4-24. Obviously this simpler model 

does not reflect correctly the factorial structure of the const-

ructs. This represents a case of missing construct validity. 

The concept of construct validity has been criticized recently on being 

unrealistic, i.e., it does not reflect the reality of scientific psychology 

(Borsboom et al. 2004; Kane, 2001). Specifically, the concept stresses 

too much the relationship between theoretical constructs at the cost of 

the relationship between constructs and measures. However, scientific 

psychology does not dispose of a dense nomological network of con-

structs. In addition, the dictum of Kelley (1927) refers to the relation-

ship between latent constructs and measurements and not between 

constructs. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-24: Alternative model of the construct of neuroticism. 

This criticism is not fully justified since, as already noted above, the 

nomological network of Cronbach and Meehl (1955) also comprises 

the relationship between constructs and measures (cf. Cronbach & 

Meehl, 1955, page 290). Moreover, the assessment of the validity of a 

test has to take into account also constructs other than the target con-

structs (cf. Ex. 4-22, page 124) as well as their relationships to the tar-

get construct (cf. Section 4.5.4.2). 

Let us conclude this section about theoretical validity by taking a short 

look on the other concepts related to theoretical validity, mentioned 

above: factorial, construct-related, structural, content validity, conver-

gent, and discriminant. Obviously, the first three terms refer to differ-

ent aspects of the measurement model and, consequently, to different 

aspects of construct validity. 

Content validity refers to whether a test covers all facets of a theoreti-

cal construct. This amounts to whether the measurement model com-

prising the construct and test (as well as other possible influences) pro-

vides an adequate representation of the situation. Thus, content validi-

ty can be conceived of as an aspect of construct validity. 

Neuroticism 

A D H I 

1 2 3 4 
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Convergent and discriminant validity are concerned with whether the 

observed correlations between measures correspond to the correlations 

predicted by the theory (or model). Campbell & Fiske (1959) used 

observed correlation in order to assess these types of validities. Bollen 

(1989) exhibited the shortcomings of this approach and showed that a 

proper treatment has to be based on latent variable models. Thus, these 

two types of validity can also be regarded as special cases of construct 

validity. 

In summary, the concept of construct validity refers to the correctness 

of the measurement model and, by consequence, the inferences based 

on this model. It comprises all the different sorts of theoretical validi-

ty. The validity of a test (cf. Concept 4-18, page 124) is but one aspect 

of construct validity that concerns the relationship between the latent 

construct and its measures. 

4.5.4 Model Based Measures of the Validity of a Test 

The previous discussion exhibits that in case of measuring theoretical 

constructs the empirical measures of validity can be misleading (cf. 

Ex. 4-21 on page 122). The following example provides a further il-

lustration. 

 Ex. 4-24: The validity of a test: 

 

Given: 

1. The target construct T to be measured: emotional intelli-

gence; 

2. An observed measure YT that is an indicator of T; 

3. A further construct  that is closely related to the target 

construct T. 

4. The measure Y is an indicator of the latent construct  (but 

not of the target construct T): social competence. 

5. An additional latent construct : verbal ability.  

 
The measurement model in Figure 4-25 represents the measu-

rement situation. 

 

Obviously, the test Y is not a valid test of the target construct 

T, since there is not direct causal influence of this latent con-

struct on Y, and, consequently, the construct T does not ex-

plain any systematic variance in Y. 

 

Nevertheless, a high correlation between the criterion YT and 

Y might be observed, due to a high correlation between the 

two constructs T and , as well as the fact that both measures 

are influenced by a third latent factor . 

Ex. 4-24 demonstrates again the shortcomings of empirical measures 

of validity. Moreover, it also provides an interpretation of Kelley’s 

(1927) definition of validity within the framework of causal models: 
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A test measures the latent construct it purports to measure if the 

construct exerts a direct causal influence on the measure. 

Note that if the construct T is not a direct cause of a test Y then a set 

of variables can be found (e.g. construct  in Ex. 4-24) such that T 

does not explain any systematic variance in Y as soon as these variab-

les have been taken into account. We, now present two measures of 

the validity of a test that are based on these considerations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-25: Model of two measurements for measuring latent con-

structs: T = emotional intelligence,  = social compe-

tence, and  = verbal abilities. 

4.5.4.1 THE LOADING COEFFICIENT AS A MEASURE OF VALIDITY 

The definition of the validity of a test Y as a measure of a target con-

struct  (Concept 4-18, page 124), as well as the previous considerati-

ons the validity of Y is best gauged by the loading coefficient Y   re-

presenting the direct causal influence of the latent construct on the me-

asure. 

The unstandardized loading coefficients Y   cannot be used since it 

depends on the scales of the latent and observed variable. Thus the 

standardized coefficient 
s

Y   has to be employed as a measure of the 

validity of a test. 

  Comment 4-11: 

 

Remember the relationship between the standardized s

Y   and 

the unstandardized loading coefficient Y  : 

 
s

Y Y

Y


   





 
, 

T 

YT Y 

T 

 

Y 

 

1 1 

 

 

 

  

 

 

 
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where   and Y  denote the standard deviations of the la-

tent construct  and the observed score Y, respectively. 

If the target construct is the only latent construct exerting an influence 

on the measure Y one gets the following relationship between the reli-

ability of Y and the standardized loading coefficient s

Y  : 

 s RelY Y  , 

This relationship is in accordance with the principle that the maximal 

validity corresponds to the square root of the reliability of the measure 

(see, for example, Angoff, 1988). 

4.5.4.2 UNIQUE TRUE SCORE VARIANCE AND RELIABILITY 

Bollen (1989) presents a second measure of validity that he calls the 

unique validity variance. In the following we use, instead, the name 

unique reliability since this appears to be a better name. 

 Concept 4-20: Unique reliability: 

 

The unique reliability  Rel Y  consists in that portion of the 

variance of the measure Y that can be unambiguously attribut-

ed to the latent target construct   that the test Y intends to 

measure. The unique reliability is given by: 

  
 

 

2

uniqueVar
Rel

Var

Y
Y

Y

 







 (4-46) 

 The symbols have the following meaning: 

 
2

Y   denotes the squared loading coefficient of the 

path Y . 

  YVar  symbolizes the variance of the test Y. 

  uniqueVar   denotes the variance of the construct  , that 

cannot be explained by the other constructs. 

 Comments: 

 

1. The equation of the unique reliability conforms to the equa-

tion of the reliability of a test in case of  being the only 

latent construct exerting an influence on the measure Y. 

Hence, in this case the unique reliability is simply the 

reliability of the test. 

 

2.  uniqueVar   corresponds to the residual variance after parti-

alling out the total variance of  that variance which  

shares with the other constructs exerting an influence of Y 

(cf. Method 4-7). 
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Note that since the target construct  may be correlated 

with other latent constructs, a part of the variation of  can 

be explained by the varaiotion of the other constructs. This 

variation in  explained by the other construct should not 

enter into the computation of the unique reliability. 

 

3.  2

uniqueVarY    can be denoted as the unique true score 

variance: The variation of the measure Y that can be attri-

buted uniquely to the variation of the target construct . 

The computation of the unique reliability, requires the calculation of 

the unique true score variance  uniqueVar  . Method 4-7 explains how 

this can be done by means of matrices. 

 Method 4-7: Partialling out of the target construct the vari-

ance that can be explained by variations of the 

other constructs. 

 

Given: 

 The factor analytic model (of first order) with p latent vari-

ables 1 2 1, , , , p     that exert and influence on test Y.  

symbolizes the target construct the test intends to measure 

(cf. Figure 4-26). The symbols i   1,2, , 1i p   de-

note the other constructs. 

 

 The variances of and the covariances between the latent 

constructs 1 2 1, , , , p     have been estimated from the 

data on the basis of a test model (a linear structural equa-

tion model). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-26: A test Y, measuring the latent constructs 1 2 1, , , p   , 

additionally to the target construct . 
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Wanted: 

The residual variance  uniqueVar   after removing the variance 

of  that can be explained by the constructs: 1 2 1, , , p   . 

 

Die residual variance can be computed using linear regression 

with the target construct  as the dependent and the other 

constructs 1 2 1, , , p    as the independent variables: 

 1 2 11 2 1p p                . (4-47) 

 The symbols have the following meaning: 

 

1 2 1
, , ,

p
      denote the regression coefficients, and the 

symbol  (zeta) denotes the residual term. The variance 2
 of 

 corresponds to the unique variance  uniqueVar   that cannot 

be explained by the independent variables 1 2 1, , , p   . 

 
The residual variance can be explained by means of a simple 

matrix equation: 

      1

uniqueVar Var    T
Φ  ηξ ηξξ  , (4-48) 

 where: 

 

ηξ  denotes a  1 1p    columns vector containing the 

covariances between the target construct  and the 

other latent constructs 1 2 1, , , p    exerting an influ-

ence on Y. 

 

1
Φξ  represents the inverse covariance matrix [of dimen-

sion    1 1p p   ] between the latent constructs 

1 2 1, , , p   . 

  Var   symbolizes the variance of the target construct . 

 

Comment: 

The expression 
1 T

Φξ ηξ ηξ  represents that part of the vari-

ance of  that can be explained by the variables 1 2 1, , , p   . 

The following example illustrates the computation of the unique true 

score variances and reliabilities, respectively. 

 Ex. 4-25: Unique reliabilities 

Given: The model of Figure 4-27. 

Wanted: The unique reliability of Y with respect to 1, 2, and 3. 
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1. Die residual variances, after regressing the target construct on the 

other constructs are: 

 unique 1Var 1.893 , 

 unique 2Var 1.343 , and 

 unique 3Var 2.833  

2. The unique reliabilities for the single constructs are: 

 
 

 
1

1

2 2
unique 1Var 1.5 1.893

Rel 0.557
Var 7.645

Y
Y

Y

  
  






, 

 
 

 
2

2

2 2
unique 2Var 0.7 1.343

Rel 0.086
Var 7.645

Y
Y

Y

  
  






, and 

 
 

 
3

3

2 2
unique 3Var 0.3 2.833

Rel 0.033
Var 7.645

Y
Y

Y

  
  






. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-27: Structural equation model for illustrating the computa-

tion of unique reliabilities. 

The detailed computation of  unique 1Var   looks like this: 

The vector of covariances between 1 and the two other constructs is 

given by: 

 1 2 3,

0.4

0.1

 
  
 

  
 , and    

1 2 3,
0.4 0.1T

  
 , respectively. 

The covariance matrix of the other two constructs looks like this: 

 2 3

1.5 0.5

0.5 3.0

 
  
 

Φ
  . 

Consequently, 

1 

 
1 

Y  

2  

 

3  
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          

 

1 2 3 2 3 2 3

1

unique 1 1 , ,

1

Var Var

1.5 0.5 0.4
2.0 0.4 0.1

0.5 3.0 0.1

2.0 0.107

1.893





   

   
      

   

 



T
Φ

       
   

 

The unique variances of the other constructs may be computed in a 

similar way. 

The unique reliability depends on the correlation between the target 

construct  that the test Y intends to measure and the other latent con-

structs on which the test is loading: the higher this correlation the lo-

wer the unique variance of . 

By consequence, unique reliabilities do not sum to that reliability of 

the test Y. For instance, the sum of unique reliabilities in Ex. 4-25 is 

0.677, whereas the reliability is: Rel(Y) = 0.869. The sum of the uni-

que reliabilities corresponds to the reliability of the test only in case of 

the latent constructs being uncorrelated. 

4.5.5 The Validity–Reliability-Paradox 

In some textbooks (e.g. Schmid, 1992; Rost, 2004) one can find the 

following statement that has been termed the validity-reliability para-

dox: 

Increasing the reliability of a test can result in a reduction of the validity of 

the test. 

An increase of the reliability of the sum of test items can result in a 

violation of the content validity of the test if the items added differ 

only slightly in their content. As a result the test items do not capture 

all aspects (facets) of the construct which amounts to a violation of 

construct validity. 

However, this limitation of content validity is not meant by the vali-

dity-reliability paradox. Rather, the latter refers to the fact that the 

validity coefficient (i.e. the correlation between the test scores and a 

given criterion C) can be reduced by increasing the reliability of the 

single measures. 

Assume, for the sake of concreteness, that there are n parallel tests 

1 2, , , nY Y Y , as well as a criterion C. Assuming that the correlation 

 Corr , iC Y  is the same for each test item iY  it can be shown (Exercise 

4-28) that the correlation  Corr ,C Y  between the criterion C and the 

sum 1 2 nY Y Y Y     of the test items is given by: 
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 
 

   

Corr ,
Corr ,

1 1 Rel

i

i

n C Y
C Y

n Y




  
. (4-49) 

The symbols have the following meaning: 

 Corr , iC Y  denotes the correlation between the criterion C and the 

test item iY . It is assumed that this correlation is the same 

for all test items. 

 iYRel  denotes the reliability of test item iY  that corresponds to 

the correlation  Corr ,i jY Y  between the single test items. 

Note that since the test items are parallel  Corr ,i jY Y  is 

identical for all pairs of test items, and, by consequence, 

 Rel iY  is the same for all test items. 

Increasing  iYRel  results in a greater denominator and thus in a de-

crease of the validity coefficient  Corr ,C Y . 

This way of reasoning has a major drawback: It ignores the latent va-

riable structure. If the latter is taken into account, the alleged paradox 

disappears. From the perspective of latent variable models the situati-

on allows for two basic types of models: 

1. The criterion C, on the one hand, and the measures 1 2, , , nY Y Y , on 

the other hand, load on different constructs: In this case there exists 

no paradox at all since 1 2, , , nY Y Y  are, obviously, not valid measu-

res of the construct that is measured by the criterion C. 

2. The criterion C and the measures nYYY ,,, 21   are measuring the 

same underlying construct. In this case, an increase of  iYRel  can 

never lead to a decrease of  Corr ,C Y . 

Let us consider the two cases in greater detail. Figure 4-28 exhibits a 

latent variable model representing the first case. Note that the n paral-

lel tests 1 2, , , nY Y Y  are not loading on the target construct  that is 

measured by the criterion C. Rather they are loading on a different 

construct ξ. Consequently, 1 2, , , nY Y Y  cannot be regarded as valid 

tests of the target construct .  

By consequence, the empirical validity coefficient  Corr ,C Y  and its 

size, respectively, is not a useful measure of the validity of the tests iY  

 1,2, ,i n . 

The reliability  Rel Y  can be made greater by increasing the variance 

2  of the construct ξ (i.e. the population becomes more heterogeneous 
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 ξ 

C Y1 Y2 Yn … 

 

1 2 n C 

1 1 1 1 

1 1 1 C 

  

    

with respect to the latent construct ξ, everything else staying the 

same). In this case  Rel Y  increases since (Exercise 4-29): 

 
 

2

2 2 2 2

1
Rel

1

n
Y

n n


 

    



   

. (4-50) 

Hence, increasing the variance 2  results in a decreased denominator, 

and, by consequence, in a higher reliability of the sum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-28: Structural equation model for illustrating the validity-

reliability paradox. 

The correlation  Corr ,C Y  is given by (Exercise 4-29): 

 
2

2 2 2 2

Corr ,

C

C

C

C Y

n


 



      




 

. (4-51) 

Increasing the variance 2  increases the denominator thereby decreas-

ing the correlation  Corr ,C Y . Consequently, increasing the reliabili-

ty of the sum Y results in a reduction of the validity coefficient 

 Corr ,C Y . However, as noted above this cannot be interpreted as a 

case of a validity-reliability paradox, since, due to the fact the 

measures iY  and CY  are not measuring the same latent construct, the 

validity coefficient is not a sensible measure of validity of the sum Y. 

Let us now consider the second case where the test items iY  are valid 

indicators of the target construct  (cf. Figure 4-29). For this model the 

validity coefficient turns out to be (Exercise 4-30): 
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 

C Y1 Y2 Yn … 

1 2 n C 

1 1 1 1 

1 1 1 C 

    

 

 
2 2

2

2 2

Corr ,

1C

C

C

C Y

n




 
   

 

 

 

. (4-52) 

To increase the reliability of a test iY , one hast to either increase the 

variance 2  or decrease the error variances 2 . In both cases the 

validity coefficient  Corr ,C Y  becomes greater since the dominator 

of Equation (4-52) decreases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-29: Structural equation model used to illustrate the validity-

reliability paradox. 

This result seems to be in contraction to Equation (4-49) according to 

which the increase of the reliability of a valid test should lead to a 

decrease of the correlation between the test and the criterion. However, 

this contradiction is a spurious one since the increase of  iYRel  is ac-

companied by an increase of  Corr , iC Y  in the nominator of Equation 

(4-49). Thus the increase of  iYRel  increases both the nominator and 

the denominator of Equation (4-49) resulting in a net increase of 

 Corr ,C Y . 

The preceding discussion demonstrates that the validity-reliability pa-

radox that may be observed on the level of observed correlations van-

ish into thin air as soon as the latent variable structure is taken into ac-

count. 

  Comment 4-12: 

 

It might be argued that the models discussed above do not take 

unexplained covariances 
,
Cε ε  between the residual of the cri-

terion C and the error terms of the test items iY  into account. 
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Note, however, that unexplained covariances 
,
Cε ε  have no 

effect on the reliability  Rel Y . Thus, introducing unexplained 

covariance arcs between C and the test items iY  into the model 

of Figure 4-29 does not invalidate the given argument. 

4.6 Mean Structures 

The previous presentation was concerned predominantly with the ana-

lysis of the structure of tests. Consequently the analysis of the covari-

ance structure that represents the structural aspect of the tests in CTT 

was in the focus of interest. 

In this chapter we turn to the analysis of the means and intercepts that 

constitute the mean structure of the tests. The means and intercepts re-

present the performance aspect like the difficulty of items or the mean 

ability of the population in question. 

The chapter comprises three parts: Chapter 4.6.1 presents the linear 

structural equation model used for modeling covariance and mean 

structures. Chapter 4.6.2 is concerned with the problem of predicting 

latent construct values on the basis of the observed test scores. Finally, 

Chapter 4.6.3 discusses the problem of comparing different groups. 

4.6.1 Modeling Mean Structures Using Linear Structural 

Equation Models 

Linear structural equation models can be used to model mean struc-

tures. The mean structure is represented by two types of parameters: 

1. Mean parameters representing the means of exogenous parameters. 

2. Intercept parameters associated with endogenous variables. The in-

tercept parameters constitute the regression constants of the linear 

structural equations. 

Since the parameters constituting the mean structure are not random 

variables they are irrelevant with respect to the covariance structure. 

Figure 4-30 depicts the general linear structural model with mean and 

intercept parameters that are represented by triangles. The symbols 

concerning the parameters of the mean structure have the following 

meaning: 

1 2
, , ,

p
      denote the means of the latent constructs; 

1 2
, , ,

n
      represent the means of the errors; 

1 2
, , ,

nY Y Y    symbolize the intercepts or regression constants. 
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Figure 4-30: The general factor analytic model of first order with 

mean and intercept parameters. 

The system of linear equations with mean parameters looks like this: 

1

2

1 11 1 12 2 1 1

2 21 1 22 2 2 2

1 1 2 2n

Y p p

Y p p

n Y n n np p n

Y

Y

Y

           

           

           

   

   

   

. (4-53) 

The addition of means and intercepts enables the modeling of the 

means of the observed test scores: 

1 1 1 2

2 2 1 2

1 2

11 12 1

21 22 2

1 2

p

p

n n p

Y Y p

Y Y p

Y Y n n np

           

           

           

  

  

  

. (4-54) 

Equation (4-54) results from equation (4-53) by applying the rules for 

expectations and the assumption that the means of the errors are all 

equal to zero: 0
i

    1,2, ,i n . 

 Comment 4-13: Fixing the means of the error terms: 

 

Similar to fixing the loading coefficients associated with the 

error variables to 1 the means of the error variables are, in ge-

neral fixed to 0. This represents the assumptions that the er-

rors are not systematically biased. 

 

The setting of the means of the error terms to zero does not 

constitute any restriction of the model since any systematic in-

fluences are represented by the regression constants. This 

includes systematic biases of the errors. 

 

 

 

1 

 

 

  … 
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1 … 
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The system of equations in (4-54) models the means of the test items 

by means of regression constants as well as the means of the latent 

constructs and the loading coefficients. The estimation of the mean 

and intercept parameters is based on the observed means 
1 2, , , nY Y Y . 

Consequently, n observed means are added to the  1 2n n   free data 

points of observed variances and covariances resulting in  3 2n n   

free data points. 

Since that are more mean and intercept parameters than observed 

sample means the parameters of the mean structure are unidentified as 

long as there are not further restrictions on these parameters. 

The following example demonstrates the usage of mean structures as 

well as the fixing of the parameters of the mean structure. 

 Ex. 4-26: -equivalent versus essential -equivalent model: 

 

In Section 4.2.3.3 (page 56) the distinction between -equiva-

lent and essential -equivalent tests has been introduced. It 

was also mentioned that this distinction is relevant only for 

models representing means structures. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-31: Linear structural equation model of four essential -
equivalent measures. 

 
Figure 4-31 illustrates the model of essential -equivalent 

tests. The following restrictions have been imposed: 

 
1. The regression constant of the first test has been fixed to 

0: 01  . 

 

2. The mean of the latent construct   as well as the regres-

sion constants 
32 ,  and 4  are free parameters that are 

estimated from the data. 
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For the model in Figure 4-31 (with the given restrictions) the 

estimated mean ̂  corresponds to the observed mean of Y1. 

The estimated intercepts 
32

ˆ,ˆ   and 
4̂  correspond to the 

differences between the observed means of the associated 

variables minus the observed mean of variable Y1: 1
ˆ YYii   

 4,3,2i . 

 

The model of essential -equivalent test does not specify any 

restrictions on the observed means. Consequently it provides 

no testable predictions with respect to the mean structure of 

the tests (Note that the number of free parameters of the mean 

structure corresponds to the number of observed means). 

 

The model of -equivalent tests results from the given model 

of essential -equivalent tests by setting the intercept parame-

ters to zero: 
2 30, 0    , and 04  . 

 
Thus, the model of -equivalent tests predicts that the observ-

ed means are identical. 

 
Figure 4-32 presents an alternative parameterization of the es-

sential -equivalent model. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-32: Linear structural equation model of four essential -
equivalent measures (Alternative parametrization). 

 

The -equivalent model results by equating the intercept pa-

rameters: 
1 2 3 4       . This leads to the same predicti-

on as for the parameterization of Figure 4-31: The model pre-

dicted means are all equal. 
  

 Notation 4-9: 

 
Since that means of the errors are always fixed to zero these 

means are no longer shown in the subsequent presentation. 
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Having specified the structural equation model for modeling the mean 

structure of tests we next discuss a first application that requires mean 

structures. 

4.6.2 Prediction of Latent Construct Scores from Observed 

Test Scores 

Assume that an examinee has been tested using n test items. The 

observed test scores are 1 2, , , nY Y Y . Since the main function of the 

observed test scores consists in providing information about the latent 

construct scores one requires a method for inferring the values of the 

person on the latent constructs on the basis of the observed test scores. 

There exist different methods to predict the latent construct score from 

the observed test scores. In the following, two estimators for predict-

ing latent construct scores are discussed: 

1. The regression (least squares) predictor, and 

2. The maximum likelihood predictor. 

4.6.2.1 LEAST SQUARES PREDICTOR OF LATENT CONSTRUCT SCORES 

The method of least squares provides the best linear prediction and, in 

case of normally distributed data the best prediction, in the sense of 

expected squared deviation (Searle, Casella, & McCulloch, 1992, 

Chapter 7). 

 Method 4-8: Least squares (LS) predictor of the latent con-

struct scores 

 

Given: 

The general factor analytic model of Figure 4-30 (page 139). 

In the subsequent presentation the following symbols are used: 

 
1 2

ˆ , , , p
   

T
η     denotes the vector of the predicted scores 

for the p latent constructs; 

 1 2
ˆ ˆ ˆ ˆ, , ,

p

    
 

T

ημ     represents the vector of estimated mean 

parameters of the p latent constructs; 

 
 1 2, , , nY Y YT

Y  denotes the vector of the n observed test 

scores. 

 
1 2
, , ,

nY Y Y
     

T

Yμ symbolizes the mean vector of observed 

test scores. 
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Φ̂  denotes the (pp) covariance matrix containing the esti-

mated variances and covariances of the p latent constructs: 

1 2

2

1 12 11

2
2 21 2 2

2

1 2

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

p

p

p

p
p p p

   
 

    
 
 
    

Φ

  







. 

 

Λ̂  represents the (np) matrix with the estimated loading co-

efficients: 

1 2

11 12 11

2 21 22 2

1 2

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

p

p

p

n
n n np

Y

Y

Y

   
 

    
 
 
    

Λ

  

. 

 

YΣ̂  symbolizes the estimated (nn) covariance matrix of the 

observed test scores (i.e. the covariance matrix of the test scor-

es predicted by the model): 

1 1 2 1

2 1 2 2

1 2

1 2

2

1

2

2

2

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

n

n

n n n

n

Y Y Y Y Y

Y Y Y Y Y

n Y Y Y Y Y

Y Y Y

Y

Y

Y

   
 
    
 
 
    

YΣ . 

 
The least squares (LS) predictor η̂  of latent construct scores is 

given by the following matrix formula: 

  1ˆˆ ˆˆ ˆ     T

η Y Yη μ Φ Λ Σ Y μ . (4-55) 

 Comments concerning the form of the least squares predictor: 

 1. The least squares predictor has the following structure: 

      
1

ˆ ˆˆ ˆ,


    T

η Yη μ Kov η Y Var Y Y μ . 

 

 ˆ , T
Kov η Y  symbolizes the estimated covariance matrix 

between the latent constructs η  and the test scores Y . This 

matrix can be computed as follows:   ˆˆˆ ,  T T
Kov η Y Φ Λ . 

 
 YraVˆ  denotes the estimated covariance matrix of the test 

scores Y :   YΣYraV ˆˆ  . 
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The following equation results from the theory of least 

squares: 

   
1ˆ ˆ ˆ,


 T
B Kov η Y Var Y . (4-56) 

The symbol B̂  denotes the (pn) matrix of the estimates 

least squares (regression) coefficients of the regression of 

the latent constructs on the observed test scores. It has the 

following structure: 

 

1 2

11 12 11

2 21 22 2

1 2

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

n

n

n

p
p p pn

Y Y Y

   
 

    
 
 
    

Β







 

 Equation (4-55) can thus be written as: 

  ˆˆ ˆ   η Yη μ Β Y μ . (4-57) 

 

(4-57) represents the following system of equations: 

     

     

     

1 1 2

2 1 2

1 2

1 11 1 12 2 1

2 21 1 22 2 2

1 1 2 2

ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ ˆ

n

n

p n

Y Y n n Y

Y Y n n Y

p p Y p Y pn n Y

Y Y Y

Y Y Y

Y Y Y

           

           



           













, 

 where: 

 

1

2

p

 
 
 
 
 
  

η







, 

1

2

ˆ

ˆ
ˆ

ˆ
p

 
 
 

  
 
 
 

ημ







,

1

2

1

2

ˆ

ˆ
ˆ

ˆ
n

Y

Y

n Y

Y

Y

Y

 
 

 
   

 
  

YY μ . 

 (The structure of matrix Β̂  is shown above). 

 

2. The LS predictor of Equation (4-57) represents the multi-

variate version of the least squares estimator of the simple 

linear regression model: 

 

Let  xy  denote the simple linear regression 

equation. The predictor of y is given by ˆˆy x  , with 

xy  ˆˆ  and 
2ˆ
XXY ss . 
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The symbols x  and y  denote the sample of x and y. 
XYs  

and 
2

Xs  denote, respectively, the sample covariance between 

x and y as well as the sample variance of x. 

 

Replacing the estimator ̂  by the right-hand side of the equ-

ation (cf. above) one gets:  ˆy y x x   . This equation 

has the same structure as Equation (4-57). 
 

 Notation 4-10: »Prediction« instead of »estimation«: 

 
In the previous presentation the term »prediction« of the latent 

construct scores instead of the term »estimation« was used.  

 

In addition, instead of using a »hat« as in case of estimates 

(e.g. ̂ ) the »tilde« notation is employed to denote 

predictions (e.g.  ). 

 

This notation conforms to the general convention that the 

latent variable scores are predicted whereas the values of pa-

rameters are estimated. 

 

This distinction is due to the fact that constructs are repre-

sented as random variables whereas parameters represent fix-

ed values (at least in classical statistics). 

Ex. 4-27 illustrates the method of predicting a latent construct score by 

means of the least squares predictor. 

 Ex. 4-27: Least squares prediction of a latent construct score: 

 

Given: 

 The model of Figure 4-18 (page 110). 

 Assume that the (estimated) mean of the latent construct 

was ˆ 100  . 

 
 The estimated means of the tests are assumed to be: 

100ˆˆˆˆˆˆˆ
5432121
 ZZZZZYY . 

 

 The observed values of the examinee on the 7 test are: 

150iY ,  1,2i  , and 90jZ ,  1,2, ,5j  . 

 
 The estimated covariance matrix of the latent construct 

is: 1ˆ  . 

 
 The estimated matrix of loading coefficient is: 

 3333333ˆ T
Λ  

  The model implied covariance matrix is given by: 
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





























90999999

99099999

99909999

99990999

99999099

99999159

99999915

ˆ
YΣ  

 The least squares (LS) predictor looks like this:: 

 

 

 

1

1

ˆ ˆˆ ˆ

15 9 9 9 9 9 9 150 100

9 15 9 9 9 9 9 150 100

9 9 90 9 9 9 9 90 100

100 1 3 3 3 3 3 3 3 9 9 9 90 9 9 9 90 100

9 9 9 9 90 9 9 90 100

9 9 9 9 9 90 9 90 100

9 9 9 9 9 9 90 90 100





     

     
     
     
     
     

          
     
     
     
    
     

T

Y YΛ Σ Y μ

110.6

 
 
 
 
 
 
 
 
 
 
 



 

 
Comment: The mean of the 7 test scores is: 107.1, i.e. lower 

than the least squares prediction. 

4.6.2.2 MAXIMUM LIKELIHOOD PREDICTOR OF LATENT CONSTRUCT 

SCORES 

 Method 4-9: Maximum likelihood (ML) predictor of latent 

construct scores 
 The ML predictor is given by the following equation: 

    
1

1 1ˆ ˆ ˆ ˆ ˆˆ ˆ


        T T

η Yη μ Λ Θ Λ Λ Θ Y μ . (4-58) 

 The symbol 1ˆ 
Θ denotes the inverse of the estimated covari-

ance matrix Θ̂  of the error variables. 

 Comment: The latent construct scores given by the ML pre-

dictor are also called Bartlett factor scores. 
 

 Ex. 4-28: Maximum likelihood prediction of a latent construct 

score (continuation of Ex. 4-27): 

 

Given: 

The model of Figure 4-18 (page 110) with the data given in 

Ex. 4-27. 

 The covariance matrix of the errors is given by: 
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6 0 0 0 0 0 0

0 6 0 0 0 0 0

0 0 81 0 0 0 0

ˆ 0 0 0 81 0 0 0

0 0 0 0 81 0 0

0 0 0 0 0 81 0

0 0 0 0 0 0 81

 
 
 
 
 

  
 
 
 
 
 

Θ . 

 The maximum likelihood (ML) predictor is thus given by: 

 

   

 

1
1 1ˆ ˆ ˆ ˆ ˆˆ ˆ

1
0 0 0 0 0 0

6

1
0 0 0 0 0 0

6 3

1 30 0 0 0 0 0
81 3

1
100 3 3 3 3 3 3 3 30 0 0 0 0 0

81
3

1
0 0 0 0 0 0 3

81
31

0 0 0 0 0 0
81

1
0 0 0 0 0 0

81


         

  
  
  
  
    
    
    
    
    
      
    
    
    
    

   
  
  
  
   

T T

YΛ Θ Λ Λ Θ Y μ

 

1

1
0 0 0 0 0 0

6

1
0 0 0 0 0 0

6 150 100

1 150 1000 0 0 0 0 0
81 90 100

1
3 3 3 3 3 3 3 90 1000 0 0 0 0 0

81
90 100

1
0 0 0 0 0 0 90 100

81
90 1001

0 0 0 0 0 0
81

1
0 0 0 0 0 0

81























 
 
 
 
    
    
    
    
    

       
    
   
   
   

   
 
 
 
  

113.5

 
 
 
 
 
 
 
  
  
  

 



 

 
Since the matrix Θ̂  is a diagonal matrix its inverse 1ˆ 

Θ  is a di-

agonal matrix with the inverse entries on the diagonal of Θ̂ : 
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1

1
0 0 0 0 0 0

6

1
0 0 0 0 0 0

6

1
0 0 0 0 0 0

81

1ˆ 0 0 0 0 0 0
81

1
0 0 0 0 0 0

81

1
0 0 0 0 0 0

81

1
0 0 0 0 0 0

81



 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
  

Θ . 

 
Comment: The ML predictor results in a higher latent score 

than the LS predictor (110.6). 

The ML predictor can be expresses by a simple algebraic expression if 

there is (a) only a single latent construct, and (b) the error variables are 

uncorrelated. Specifically, in case of the congeneric test model, the 

matrix equation (4-58) of the predictor simplifies to: 

 2
1

2

2
1

ˆ
ˆ

ˆ
ˆ

ˆ

ˆ

i

n
i

i y

i i

n
i

i i

y




 
  

   







 . (4-59) 

This can be further simplified in case of -equivalent tests: 

 
2

1

2
1

ˆ

ˆ

ˆ
1

ˆ

i

n
i y

i i

n

i i

y





 
 

 
   






 . (4-60) 

Finally, in case of parallel tests we get the simple expression: 

 
1

ˆ

ˆ
i

n

i y

i

y

n




  


 . (4-61) 

If the latent mean is fixed to zero  ˆ 0   then the first term on the 

right-hand side of Equations (4-59) to (4-61) can be dropped. Note that 

the latent constructs have no internal location. Thus the location para-

meter, i.e. the mean, has to be fixed to a specific value. For intelli-
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gence tests it is common practice to assume that the mean of the latent 

construct in the population has the value 100. 

4.6.3 Comparison of Different Populations 

The comparison of different groups (or populations) is concerned with 

issue of differences between the groups on the latent constructs. It is 

important that the comparison concerns the latent constructs and not 

the observed measurements. Typical questions concerning differences 

between populations with respect to latent traits are: 

»Do women have a higher disposition to depression than men?«; 

»Is the power motive higher in men than in women?«; 

»Does the general intelligence differ between Blacks and Whites?«. 

This raises the following question: 

 

Issue 4-1: 

Which conditions enable the inference of differences or 

equality of latent construct scores for different groups 

on the basis of the observed test scores? 

Let us specify, as a first step, two necessary conditions that enable an 

inference from the observed test scores to the latent construct scores: 

1. The constructs to be measured are equivalent in both groups. 

2. The tests are measuring the latent constructs in both groups in the 

same way. 

The significance of these two conditions is obvious: First, if the latent 

constructs differ between groups (e.g. they comprise different facets) it 

does not make much sense to compare the groups on the latent con-

structs. Second, if the tests measure the constructs in a different way in 

the two groups (= lack of measurement equivalence) the inference 

from the test scores to latent construct scores seems unjustified. 

Missing measurement equivalence can have different reasons. For in-

stance, test items may be interpreted differently in different groups. In 

case of rating scales as measurement instruments participants of diffe-

rent groups may use different criteria for selecting a response category. 

The preceding discussion illustrates that the assessment of differences 

between different groups require specific considerations concerning 

(a) the structure of the latent constructs, and (b) the relationship bet-

ween latent constructs and the measurements in the different groups. 

In order to elucidate the issue further let us, first, discuss the problems 

that encounters a naïve approach. 

4.6.3.1 INFERENCE OF GROUP DIFFERENCES ON THE BASIS OF OBSERV-

ED SCORES 

The simplest method for the comparison of groups consists in compar-

ing observed test scores. Thus inferences of possible differences are 
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made on the basis of the observed scores without taking the latent 

variable structure into account. 

 Ex. 4-29: Assessment of group differences on the basis of ob-

served test scores: 

 

Given: 

 The model of Figure 4-33. 

 Two groups (say, man and women); 

 For each person in each group two measures are taken: 

           1 1 1 2 2 2

1 2 1 2,  and ,y y y y    
   

T T

y y . 

 
   1 2ˆ ˆand Σ Σ  denote the model implied covariance mat-

rices of the measures for the two groups. 

    1 2
 and y y  represent the model implied mean vectors 

of the two groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-33: Models for two groups resulting in the same observed 

covariance and mean structure with differing latent co-

variance and mean structure for the two groups. 

 

Question: 

Is it possible to draw valid inferences about the mean and co-

variance structure of the latent constructs on the basis of the 

observed means and covariances? 

 

Answer: 

No, this is impossible as demonstrated by the two models of 

Figure 4-33: 

0 

 

(1) 

  

 

0.8 0.6 

1 1 

0 0 

2 

0 0 0.64 0.36 

1 

(2) 

 

 

0.4 0.3 

1 1 

0 0 

4 

0 0.64 0.36 

4 
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The mean of the latent construct in Group 2 is double the size 

of that in Group 1:  1 2 


 and  2 4 


. However, the 

model implied means are identical:      1 2
  1.2 1.6 

T
y y . 

The same is true for the model implied covariance matrices: 

 
   1 2 1.00 0.48

ˆ ˆ  
0.48 1.00

 
   

 
Σ Σ . 

This example makes clear that a naïve approach that takes only ob-

served covariances and means into account can lead to incorrect con-

clusions with respect to the latent traits. This is a further demonstration 

of the importance of modern psychometrics that considers the com-

plete measurement model. 

4.6.3.2 FACTORIAL INVARIANCE 

In the following, conditions are specified that permit a sound conclu-

sion with respect to the equality and differences of latent construct val-

ues. 

We first consider two different parts of a linear measurement model. 

 Concept 4-21: Measurement and structural part of a linear 

measurement model: 

 The measurement part of a linear measurement model com-

prises the following three components of the measurement 

model: 

 1. The matrix  of the factor loadings. 

 2. The covariance matrix Θ  of the errors. 

 3. The vector α  of intercepts (regression constants). 

 The structural part of a linear measurement model comprises 

the following two components of the measurement model: 

 1. The covariance matrix Φ  of the latent constructs. 

 2. The vector 
ημ  of the means of the latent constructs. 

 Comment: 

The measurement part is concerned with those model compo-

nents that are related to the measurement of the latent con-

structs. By contrast, the structural part concerns the compon-

ents that are gauged by the test. 

The following concepts are of fundamental importance for the specifi-

cation of conditions that enable valid group comparisons with respect 

to the latent constructs on the basis of the observed measures. 

 Concept 4-22: Strict and strong factorial invariance (Mere-

dith, 1993): 

 Strict factorial invariance is given if the following equalities 

with respect to the measurement part hold: 
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  The loading matrices are the same for the G populations: 
     1 2 G
  Λ Λ Λ . 

  The vector of intercepts is identical for the G groups: 
     1 2 G
  α α α . 

  The covariance matrix of the errors is the same for the G 

groups:      1 2 G
  Θ Θ Θ . 

 Strong factorial invariance is given if the first two equalities 

(identical factor loadings and identical intercepts) hold. 

 Comment: 

We assume that the means of the errors are zero in all groups: 

     1 2 G
   ε ε εμ μ μ 0 . 

The following principle specifies sufficient conditions for a sound con-

clusion from the observed mean structure on the means of the latent 

constructs for different groups. 

 Principle 4-4: Factorial invariance and valid comparison of 

group means: 

 

If strict or strong factorial invariance is present a conclusion 

from the observed means on the means of the underlying con-

structs for the different groups is justified. Specifically, ob-

served differences between groups indicate differences on the 

underlying latent traits. 

 

Justification: 

The observed means are given by the system of linear equa-

tions(Note that in case of the model being correct, the ob-

served means are equal to the model implied ones, except for 

sampling errors): 

    Y η εμ α Λ μ μ  

 

In case of strict or strong factorial invariance the vectors α  of 

intercepts as well as the loading matrices Λ  are identical for 

all groups (and the mean vectors of the errors are zero in all 

groups). Consequently, observed differences of means for dif-

ferent groups can be attributed unambigously to differences 

between the latent means. 
 

 Ex. 4-30: Assessment of group differences on the basis of ob-

served test scores (Continuation of Ex. 4-29): 

 

For the model in Figure 4-33 strict as well as strong factorial 

invariance is violated since the loading matrices of the two 

groups are different. 

In the context of determining differences of latent means between dif-

ferent populations the distinction between strict and strong invariance 

is irrelevant. However, the latter distinction is relevant in case of con-
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sidering the reliability of the tests as well as in case of conclusions 

concerning the latent covariance structure on the basis of the observed 

covariances. 

The reliability of the test items is a function of their error variances. In 

addition the reliability of the sum of test scores also depends on the 

covariance between errors (cf. Chapter 4.4). By consequence, in case 

of strong but not strict factorial invariance being present the test may 

measure the latent construct with different reliability. Thus the precisi-

on of the tests as measures of latent traits may be distinct in different 

groups. 

The following principle clarifies the relationship between strict factori-

al invariance and conclusions concerning the latent covariance struc-

ture. 

 Principle 4-5: Strict factorial invariance and valid compare-

sons of group means and covarainces 

 

If strict factorial invariance is present a conclusion from the 

observed means and covariances on the mean and coviarance 

structure of the underlying constructs for the different groups 

is justified. 

 

Justification: 

The observed covariances are given by the system of linear 

equations (Note that in case of the model being correct, the 

observed covariances are equal to the model implied ones, ex-

cept for sampling errors): 

    T

YΣ Λ Φ Λ Θ  (4-62) 

 

In case of strict factorial invariance the loading matrices Λ  as 

well as the covariance matrix Θ  of the errors are identical for 

each group. Consequently, observed differences of covarianc-

es for different groups can only be due to differences of the 

covariance matrix Φ  of the latent constructs. 

 
The justification with respect to the means has already been 

given in Principle 4-4. 

Obviously, if only strong but not strict factorial invariance is present, 

i.e. the covariance matrices of the errors differ in different populati-

ons) it is impossible to infer the equality of the covariance structures 

of the latent constructs from the equality of the observed covariances. 

This is due to the fact that the model implied covariances are a 

function of both the latent covariances structure as well as the error 

covariance structure (cf. Equation 4-62). 

Unfortunately, strict and strong factorial invariance constitute ideal 

cases that are only rarely found in practical applications. This led to 

the discussion of covariance and mean structures where partial factori-

al invariance is present only (Byrne, Shavelson, & Muthén, 1989). 
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4.6.3.3 PARTIAL FACTORIAL INVARIANCE 

In case of partial factorial invariance at least one loading coefficient, 

other than the coefficient used for scaling the latent constructs, as well 

as the intercept parameter of the associated test are identical in the dif-

ferent groups. 

Ex. 4-31 illustrates the problems of interpreting differences between 

groups in case of partial factorial invariance. 

 Ex. 4-31: Assessment of group differences in case of partial 

factorial invariance 

 

Given: 

 Two groups: women and men (cf. Figure 4-34); 

 Only partial factorial invariance is given since the inter-

cepts of the measures Z4 und Z5 differ between the two 

groups. 

 

A comparison of the two groups with respect to the latent 

construct 1 is unproblematic since for this construct we have 

strict factorial invariance. Consequently, on the basis of the 

observed identical means it can safely be concluded that the 

two groups do not differ on the latent trait 1. 

 

Concerning the latent construct 2 the situation is different. 

The identity of the latent means requires different intercepts 

for the measures Z4 und Z5. 

 

Since a difference between groups has been found for two of 

the five measures the conclusion that both groups do not 

differ with respect to the latent means of 2 is problematic. 

 

In case of many indicators with deviations from strong factor-

ial invariance for only very few of them conclusions about 

equality or differences with respect to the latent construct 

may be to be justified. In this case one can eliminate the 

measures exhibiting violations of factorial invariance. 

 
It is, however, useful to further investigate the reasons for the 

violations of factorial invariance. 

The considerations formulated in the context of Ex. 4-31 with respect 

to conclusions about group differences in case of partial factorial 

invariance may be summarized as follows: 

1. With respect to latent constructs with strong factorial invariance 

being present conclusions from observed means on latent means are 

unproblematic even if there does not exist factorial invariance for 

the other constructs in the model. 

2. In case of latent constructs with only partial invariance being pre-

sent an investigation of possible reasons underlying the observed 

deviations from factorial invariance seems to be useful. These devi-

ations might indicate the presence of latent factors (not included 
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into the model) that have a different impact on the measures in dif-

ferent groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-34: Models of two groups where partial factorial invari-

ance holds. 

4.6.3.4 CONCLUSION: GROUP COMPARISONS AND FACTORIAL INVARI-

ANCE 

The considerations concerning group comparisons with respect to the 

latent constructs may be summarized as follows: 

𝑌1
ሺ𝑀ሻ

 𝑌2
ሺ𝑀ሻ

 𝑌3
ሺ𝑀ሻ

 𝑌4
ሺ𝑀ሻ

 

𝜀1
ሺ𝑀ሻ

 𝜀2
ሺ𝑀ሻ

 𝜀3
ሺ𝑀ሻ

 𝜀4
ሺ𝑀ሻ

 

1 1 1 1 
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1. The equality of or the difference between observed test scores for 

different groups does, in general, not allow for conclusions with 

respect to the equality of difference of latent constructs scores. 

2. Different loading coefficients indicate that the constructs are mea-

sured differentially in the different groups. In this case conclusions 

from measures on latent constructs are not valid. 

3. Strong factorial invariance provides a sufficient condition for sound 

conclusion concerning the mean structure. Moreover, strict factorial 

invariance is a sufficient condition for valid inferences with respect 

to the latent mean and covariance structure. 

4. In case of partial invariance limitations with respect to inferences 

from observed to latent scores concern only those constructs for 

which factorial does not hold. If violations of factorial invariance 

concerns only few out of a set of measures one can take into consi-

deration to eliminate those measures for which factorial invariance 

does not hold. 

5. It is instructive to investigate possible reasons for violations of fac-

torial invariance. Differing loading coefficients might indicate that 

the test items are treated differently in different groups. Differing 

intercepts and error variances might be an indication that the tests 

are influenced by latent constructs, not considered so far, that influ-

ence the measures differently in the various groups. 

4.7 Exercises to Chapter 4 

 
Exercise 4-1: Computation of the covariance matrix and of 

variances, covariances, and correlations 

Given: 16 measures of 250 boxes (Excel file: Data.xlsx, Sheet: 

Boxes): 

X, Y, Z, log X , logY , log Z , 2X , 2Y , 2Z , X Y , Z , X Y

, X Z ,Y Z , X Y Z   

1. Using R, compute the covariance matrix of 16 measures. Then 

compute on the basis of the computed covariance matrix the 

following quantities: 

(a)  Var X Y Z   

(b)  Var log log logX Y Z   

(c)  Cov , log log logX Y Z X Y Z     

(d)  Corr , log log logX Y Z X Y Z     

2. Demonstrate the correctness of the computations in (1) by taking 

the sums of the variables and computing the variances, covari-

ance, and the correlation of the sum variables. 
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 Exercise 4-2: Computation of covariance matrices within the 

classical test models 

Given: The test scores 521 ,,, YYY   on 5 tests with the true score 

variables 1 2 5, , ,    and error variables 1 2 5, , ,   . 

1. Compute the covariance matrix of the true scores as well as the 

model implied covariance matrix for the congeneric test model 

using the following parameters: 

2.1,8.0,5.0,7.0 5432   

2 1.5   
1

2 2       

1 2 3 4 5

2 2 2 2 20.8, 1.3, 0.7, 0.4, 2.1               

2. Compute the covariance matrix of the true scores as well as the 

model implied covariance matrix for the -equivalent test model 

using the parameters shown above. 

3. Compute the covariance matrix of the true scores as well as the 

model implied covariance matrix for the parallel test model using 

the parameters shown above, however with the following error 

variances: 

1 2 3 4 5

2 2 2 2 2 0.9               

In order to perform the computations, use matrices (and a program 

for handling matrices). 
 

 Exercise 4-3: Covariance structure of the congeneric model 

 Use covariance algebra to derive the covariance structure of 

tests for the congeneric model from the linear relationship 

between true scores. 
 

 Exercise 4-4: Determination of the parameters for the mo-

del of congeneric tests 
Given: 

The CTT model of three congeneric tests (Figure 4-35): 

Determine the estimators (i.e. formulas that represent the para-

meters as a function of observed variances and covariances) of 

the parameters. 

Hint: 

First, use the observed covariances  Cov ,i jY Y  for determining 

the loading coefficients i . Second, derive the expressions for 

the error variances 
2

i
  using the previously determined expressi-

ons of i . 
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Figure 4-35: The test model of three congeneric tests. 

 Exercise 4-5: List the parameters of the linear structural 

equation (LISREL) model and determine the 

degrees of freedom of the distribution of the 

test statistics. 
Given: 

The LISREL model depicted in Figure 4-36. The variables F, S 

and R represent the target constructs to be measured. The variab-

les D, K and M denote different methods used for measuring the 

concepts. 

1. List the free model parameters for the different categories: 

(i) Variance parameters of latent constructs; 

(ii) Covariances between latent constructs; 

(iii) Error variances; 

(iv) Loading coefficients. 

2. How many free parameters does the model comprise? 

3. How many free data points have are modeled? 

4. What is the number of degrees of freedom of the distribution 

of the test statistic? 

 

1 

 

 

1 

 

 

1 

 

   

   

 1 
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Figure 4-36: Multitrait–Multimethod-Model. 
 

 Exercise 4-6: Derivation of the implied covariance matrix of 

the classical test models 

1. Derive the implied covariance matrix of the LISREL for the 

general test model (cf. Figure 4-4 on page 73) using covariance 

algebra. 

2. Derive the implied covariance matrix of the LISREL model of 4 

congeneric tests (cf. Figure 4-5 on page 74) using covariance 

algebra. 

3. Derive the implied covariance matrix of the LISREL model of 4 

congeneric tests (cf. Figure 4-6 on page 76) using covariance 

algebra. 
 

 

1 

 
1 

 1 

 1 

 
1 

 
1 

 

D 

K 

M 

S 

F 

R 

 

 

 

 

 

 

 

 

 
1 

 
1 

 1 
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 Exercise 4-7: Anxiety as a situational factor (Steyer, 1989; 

Steyer & Eid, 1993) 
Given: 

A test for measuring anxiety at two time points with a delay of 

two month between the two time points. 

The test has been divided into two halves with 10 test items in 

each half. The observed test scores are the sum of the values of 

the 10 items of each half. 

Tab. 4-8 contains the covariance matrix of the test scores from 

the two test halves at the two time points: 
i jS A  = test half j at 

time point i  , 1,2i j  . 

The sample size was N = 179. 

Test the following assumptions of Steyer (1989): 

1. The two test halves measured at the same time points are 

parallel (for both time points). 

2. Since anxiety is a situational variable and, thus, not constant 

over time the four measures are not congeneric. 

Tab. 4-8: Covariance matrix of the test scores from two test halves of 

a test of anxiety that has been applied at two time points: 
i jS A  = test 

half j at time point i (i, j = 1, 2). 

 S1A1 S1A2 S2A1 S2A2 

S1A1 24.670    

S1A2 21.895 25.135   

S2A1 10.353 10.624 27.239  

S2A2 11.665 12.636 25.258 28.683 
 

 Exercise 4-8: Test of different test models according to 

Jöreskog (1971) 
Test the 4 Hypotheses H1 – H4 of Ex. 4-5 (page 77) using the 

covariance matrix given there. 

Which of the four hypotheses would you prefer? Justify your 

judgment. 
 

 Exercise 4-9: Testing hypotheses concerning the covariance 

structure of a number of tests 
Given: 

The covariance matrix of 7 tests: X1, X2, X3, Y1, Y2, Z1, and Z2. (Tab. 

4-9) 

The sample size is N = 350. 

Investigate the subsequent 6 hypotheses concerning the covariance 

structure of the 7 tests: 



 

 

Chapter  5: PTT 161 

 

 

 

 

Tab. 4-9: Covariance matrix of the test scores from 7 tests. 

 X1 X2 X3 Y1 Y2 Z1 Z2 

X1 4.535 1.819 1.576 3.428 2.930 1.219 3.807 

X2 1.819 4.560 1.827 3.320 3.116 1.327 3.792 

X3 1.576 1.827 4.855 3.186 3.052 1.509 3.962 

Y1 3.428 3.320 3.186 13.881 10.490 2.826 7.849 

Y2 2.930 3.116 3.052 10.490 16.514 2.122 6.763 

Z1 1.219 1.327 1.509 2.826 2.122 3.212 3.881 

Z2 3.807 3.792 3.962 7.849 6.763 3.881 15.605 
 

H1: X1, X2 and X3, as well as Y1 and Y2, as well as Z1 and Z2 are each 

congeneric. The 3 groups of variables not congeneric however. 

H2: The 7 tests are congeneric. 

H3: X1, X2 and X3 are parallel. Y1 and Y2, as well as Z1 and Z2 are 

each congeneric. The 3 groups of variables not congeneric how-

ever. 

H4: X1, X2 and X3 are parallel, Y1 and Y2, are -equivalent. Z1 and Z2 

are congeneric. The 3 groups of variables not congeneric how-

ever. 

H5: X1, X2 and X3 are parallel. Y1 and Y2, as well as Z1 and Z2 are -

equivalent. The 3 groups of variables not congeneric however. 

H6: X1, X2 and X3, as well as Y1 and Y2 are parallel. Z1 and Z2 are 

congeneric. The 3 groups of variables not congeneric however. 

Which of the 6 hypotheses would you prefer? Justify your judg-

ment. 
 
 

 Exercise 4-10: Reliability and the correlation between true 

score and observed score: 

Given: A simple measurement model: 

 

 

 

Show that the squared correlation 
2

.YR   between the observed 

scores Y and the latent construct  conforms to the reliability of 

Y: 

 
 

 

2 Var
Rel

Var
Y

Y

 



 

 

 Exercise 4-11: Error variance and reliability: 

Given: 

The linear measurement model of Figure 4-10 on page 86: 

Demonstrate the validity of the equation: 

     Var Var 1 RelY Y     . 
 

 Cov , 0

Y    



 

 
  

1  
Y  
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 Exercise 4-12: Reliability of a test with two latent variables: 

Given: The model depicted in Figure 4-37: 

 

 

 

 

 

 

 

Figure 4-37: Causal diagram of a measurement model with two 

latent constructs. 

1. Determine the estimator of  YRel  as a function of the model 

parameters. 

Hint: Use the structural equations as well as covariance algebra 

to compute the true score and the total variance of Y, predicted 

by the model. 

2. Compute the reliability employing the matrix formula of Method 

4-2 on page 85 to compute the reliability of test Y, using the data 

shown in Figure 4-38. 

Compare the result with the one ensuing from application of the 

estimator developed in the first part of the exercise (Clearly, both 

methods should lead to the same result). 

3. Use a structural equation program with the data of Figure 4-38 to 

verify the results of your computations 

 

 

 

 

 

 

 

Figure 4-38:  Causal diagram of a measurement model comprising 

two latent constructs with numerical values for the model 

parameters. 

 
Exercise 4-13: With parallel tests the correlation of the tests 

corresponds to the reliability of the two tests: 
 Given: The measurement model of two parallel tests (Figure 

4-39). 

 

1 

Y  1 
 

2 

1 

2 

 

 

 

1 = 0.3 

Y  
1 

 

2 

1 

2 = 1.4 
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Figure 4-39: Measurement model of two parallel tests. 

 Demonstrate the validity of the following relationships: 

     1 2 1 2Rel Rel Corr ,Y Y Y Y  . 

 Thus, the reliability of two parallel tests corresponds to the 

correlation of the two tests. 

 Hint: 

  
 

   
1 2

1 2

1 2

Cov ,
Corr ,

Var Var

Y Y
Y Y

Y Y



. 

 Compute the quantities on the right-hand side of the equa-

tion using the model parameters and substitute the result-

ing terms into the equation. 

 Show that the resulting expression of the correlation cor-

responds to the expression of the reliability of Y1 and Y2. 
 

 
Exercise 4-14: Computation of the reliability of two parallel 

tests: 
 Given: The values of 10 examinees on two parallel tests 

from Lord and Novick (1968) [Tab. 4-10]. 

 Lord & Novick (1968) got the following estimates: 

3. 2ˆ 140.67   [estimated true score variance] 

4. 2ˆ 9.90   [estimated error variance] 

 Determine: 

 1. The reliability of the tests using the variances estimated 

by Lord and Novick (1968). 

 2. The reliability using the correlation of the two (parallel) 

tests. 

 3. Estimate the trues score and error variance using structural 

equations assuming that test are parallel. 

 4. Compute the covariance between the two tests. Which re-

markable result do you get? 
 

 

 

 

 

 

1 1 

 

1 1 
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Tab. 4-10: Results of 10 persons on two parallel tests Y1 and Y2 (Lord 

& Novick, 1968, Table 7.3.1 on page 156). 

 Examinee 

Test 1 2 3 4 5 6 7 8 9 10 

Y1 125 119 109 104 101 98 97 94 90 81 

Y2 120 122 107 108 98 106 96 99 93 87 
 

 
Exercise 4-15: The reliability of the sum of 2 and m, respecti-

vely, -equivalent tests conforms to coefficient 

: 
 Given: The model of two -equivalent tests (Figure 4-40).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-40: A model of two -equivalent tests: 1Y  und 
2Y  represent 

the two tests. 

 1. Show that the reliability of 1 2Y Y Y   is given correctly 

by the formula of coefficient . 

 Hint: Proceed as follows: 

 (i) Show that the true score variance of Y is  4 Var  .  

 (ii) Show that    1 2Var Cov ,Y Y  

 (iii) Substitute the results in the formula of the reliability: 

 
 

 

True score variance  
Rel

Var

Y
Y

Y
 , 

 and perform the required arithmetic transformations to 

get the formula for . 

 

1 

 

  

1 

 

1 

 

1 
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 2. Generalize the result to the case of m -equivalent tests 

and demonstrate the validity of coefficient  as the coeffi-

cient of validity. 
 

 Exercise 4-16: Coefficient , 2, and the reliability of unwei-

ghted sums 
 Given: The covariance matrix of the test scores for 8 test 

items 1 2 8, , ,Y Y Y  shown in Tab. 4-11 (N = 165). 

Tab. 4-11: Covariance matrix of the test scores for 8 test items. 

 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 

Y1 0.249 0.169 0.146 0.190 0.190 0.186 0.168 -0.001 

Y2 0.169 0.251 0.135 0.172 0.172 0.166 0.148 -0.002 

Y3 0.146 0.135 0.243 0.153 0.153 0.145 0.158 0.019 

Y4 0.190 0.172 0.153 0.247 0.198 0.188 0.177 0.014 

Y5 0.190 0.172 0.153 0.198 0.247 0.182 0.177 0.020 

Y6 0.186 0.166 0.145 0.188 0.182 0.250 0.159 0.009 

Y7 0.168 0.148 0.158 0.177 0.177 0.159 0.251 0.016 

Y8 -0.001 -0.002 0.019 0.014 0.020 0.009 0.016 0.250 
 

 
1. Compute the following quantities using the variances and 

covariances of the covariance matrix: 

 (i) Coefficient  of the sum of the 8 items. 

 (ii) Coefficient  of the sum of the 7 items: 1 2 7, , ,Y Y Y . 

 (iii) Guttman‘s 2 of the sum of the 8 items. 

 (iv) Guttman‘s 2 of the sum of the 7 items: 1 2 7, , ,Y Y Y . 

 2. Evaluate the validity of the following statements: 

 (i) The 8 test items are congeneric. 

 (ii) The 8 test items are -equivalent. 

 (iii) The 7 test items 1 2 7, , ,Y Y Y  are -equivalent. 

 
3. Compute the reliability of the sums using the results from 

the covariance structure analysis of the items: 
 (i) The reliability of the sum of the 8 items. 

 
(ii) The reliability of the sum of the 7 items, 1 2 7, , ,Y Y Y , 

assuming that the 7 items are congeneric. 

 
(iii) The reliability of the sum of the 7 items, 1 2 7, , ,Y Y Y , 

assuming that the 7 items are -equivalent. 
 

 Exercise 4-17: Coefficient  and Guttman‘s 2 are identical, 

in case of -equivalent tests: 
 

Given: n -equivalent tests of a construct. 
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 Show that in this case we have: 

 
 

2

2

Cov ,

Var

i jn Y Y

Y


    , 

i.e., coefficient   is the same as Guttman‘s 
2 , where: 

 

 

 

1 1

Cov ,

1 Var

n n

i j

i j
j i

Y Y

n

n Y

 


  




 

 

   

 

2

1 1 1 1

2

Cov , Cov ,
1

Var

n n n n

i j i j

i j i j
j i j i

n
Y Y Y Y

n

Y

   
 

  
 

 

 

 

 Hint: In case of -equivalent tests the covariances  Cov ,i jY Y

between any pair of tests, iY  and 
jY , are the same. 

 

 Exercise 4-18: In case of parallel tests coefficient  corres-

ponds to the Spearman-Brown coefficient: 

 Given: n parallel tests: 

 Show that in this case the formula of coefficient : 

 
 

 

1 1

Cov ,

1 Var

n n

i j

i j
j i

Y Y

n

n Y

 


  




 

 corresponds to the Spearman-Brown formula: 

 
 

 
Rel

1 1

n
Y

n




  
 

 Hints: 

1. Note that, due to the presence of parallel tests, the follow-

ing relationships are true: 

 (i) The correlation  Corr ,i jY Y    is the same for each 

pair   and i jY Y i j , 

(ii) The variance   2Var iY  is the same for each iY . 

 2. Count the number of covariances in the nominator and 

denominator of coefficient   as well as the number of 

variances in the denominator, and replace the covariance 

terms  Cov ,i jY Y  by 
2  and the variance terms 

 iYVar  by 
2 . 

 3. Canceling terms results in the Spearman-Brown formula. 
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Exercise 4-19: The Spearman-Brown coefficient overestim-

ates the true reliability in case of correlated 

errors: 
 Given: The model in Figure 4-41: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-41: Two tests with correlated errors. 

 Note that without the existing covariance between error terms 

the two tests were parallel. In this case the Spearman-Brown 

coefficient would be an unbiased estimate of the reliability. 

 Show that for the given model Spearman-Brown coefficient 

overestimates the true reliability. 

 Hint: 

 1. Compute the true reliability of the sum of the two tests 

(using covariance algebra or matrices). 

 2. The correlation  1 2Corr ,Y Y  can be computed from the 

model implied covariance matrix (that can be computed by 

means of matrix algebra using the values shown in Figure 

4-41). 

 3. Use the Spearman-Brown formula to correct the correlation 

 1 2Corr ,Y Y  thus getting an estimate of the reliability of 

sum of the two tests. 
 

 Exercise 4-20: Coefficient  underestimate the reliability of 

congeneric measures 

 Given: n congeneric tests (Model of Figure 4-42): 

 

0.64 

 

1 

Y1 

1  

Y2 

0.6 0.6 

1 

0.64 0.2 
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Figure 4-42: A model of m congeneric tests. 

 Let 1 2 nY Y Y Y     be the sum of the n test scores. 

 Show that coefficient  underestimates the reliability  YRel  

of the sum of the n test scores. 

 Hint: 

 1. Show that 

 
 

2 2 2

1 2

1 1

Rel
Var

n n

n i j

i j
i j

Y
Y

 


      





 

 Comment: 

The double sum comprises  1n n   terms. 

 2. Show that: 

 

1 1

1 Var

n n

i j

i j
i jn

n Y

 


 

  




 

 3. Thus in case of   YRel  the following inequality hold: 

 
2 2 2

1 2

1 1 1 11

n n n n

m i j i j

i j i j
i j i j

n

n   
 

          


   

 or: 

 

  2 2 2

1 2

1 1 1 1

1
n n n n

n i j i j

i j i j
i j i j

n n
   

 

 
              
 
  

   

 or:  

 
  2 2 2

1 2

1 1

1
n n

n i j

i j
i j

n
 



             

 4. Demonstrate that this inequality is true. 

 

1 

 

 

1 

 

 

1 

 … 

 

   

1 
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 Hint: 

  
jijiji  20 222
, with equality in case of 

.ji   Otherwise the strict inequality jiji  222
 

holds. 

 Adding the equations for all combinations of i  and j ,  

 2 2

1 2 1 2

2 2

1 3 1 3

2 2

1 1

2

2

2n n n n 

     

     

     

, 

 results in the above inequality: 

 
  2 2 2

1 2

1 1

1
n n

n i j

i j
i j

n
 



             

 Demonstrate the computations using 
421 ,,,    (4 tests). 

 

 Exercise 4-21 Reliability of the sum of non-congeneric tests: 

 Given: The model of Figure 4-17 (Page 108). The loading 

coefficients are all of the same value: 7.0 . 

 Compute the reliability of the sum of the 10 tests. 

 Exercise 4-22: Reliability of the weighted sum of tests in the 

general factor analytic model: 
 Given: The model of Figure 4-15 on Page 101 (Data: Ex. 

4-11, on Page 101). 

 Compute the reliability of the weighted sum of the 5 tests us-

ing the reliabilities of the single test as weights. 
 

 Exercise 4-23: Reliability of the weighted sum of tests: 

 
Given: The model of Figure 4-18 on Page 110. 

 Compute the reliability of the weighted sum of the seven tests: 

5432121 1.01.01.01.01.0 ZZZZZYYZ  . 
 

 
Exercise 4-24 Maximal reliability I: Reliability of unweight-

ed sums vs. the reliability of optimally weight-

ed sums (congeneric tests): 
 

Given: The model of three congeneric tests (Figure 4-43). 

 Compute: 

 1. The reliability  YRel  of the simple sum: 

321 YYYY  . 
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 2. Die optimal weights iw  that maximize the reliability of the 

weighted sum. 

 3. The maximal reliability maxRel  of the optimally weighted 

sum, 332211 YwYwYwY  , with the optimal weights 

iw . 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-43: A model of three congeneric tests. 

 
Exercise 4-25: Maximal reliability II: Reliability of unweight-

ed sums vs. the reliability of optimally weight-

ed sums (non-congeneric tests): 

 Given: The model of three non-congeneric tests of Figure 

4-44. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-44: A model of three tests that are not congeneric. 

 Compute: 

 1. The reliability 67.22

1   of the simple sum: 

1 2 3Y Y Y Y   . 

 2. Die optimal weights 
2

1
  that maximize the reliability of the 

weighted sum. 

 

1 

 

 

1 

 

 

1 

 

 

 

 1 

  

  

 

1 

 

 

1 

 

 

1 

 

 

 

 1 

  

  

 1 
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 3. The maximal reliability maxRel  of the optimally weighted 

sum, 1 1 2 2 3 3Y w Y w Y w Y      , with the optimal weights 
2

1
 . 

 

 Exercise 4-26: Maximal reliability III: 

 Compute the maximal reliability of the model of Figure 4-15 

on page 101, as well as the associated optimal weight vector 

of length 1. 
 

 Exercise 4-27: Unique reliabilities: 

 Given: The model of a test with three latent constructs 

(Figure 4-45). 

 Compute the unique reliability of the test for each of the three 

latent constructs. 

 Comment  

The model of Figure 4-45 differs from the one of Figure 4-27 

(page 133) only by the higher covariance between the latent 

constructs. Consequently, the unique reliabilities should by 

lower than those obtained Ex. 4-25 (page 132). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-45: Structural model with three latent constructs and a 

single indicator. 

 Exercise 4-28: Validity-reliability paradox I 

 Given: n parallel Tests: 1 2, , , nY Y Y ; 

 The criterion C. 

 Show that the correlation  Corr ,C Y  between the criterion C 

and the sum 1 2 nY Y Y Y     is given by: 

 
 

 

   

Corr ,
Corr ,

1 1 Rel

i

i

n C Y
C Y

n Y




  
. 

1 

 
1 

Y  

2  

 

3  
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 ξ 

C Y1 Y2 Yn … 

 

1 2 n C 

1 1 1 1 

1 1 1 C 

  

    

  Corr , iC Y  denotes the correlation between the criterion C 

and the single test iY   1,2, ,i n . Since the n 

test items are parallel this correlation is the same 

for all test items. 

 iYRel  denotes the reliability of test iY  that conforms to 

the correlation  Corr ,i jY Y  between the single 

parallel tests iY  and jY  (Note that  iYRel  is the 

same for each test). 

 Hints: 

1. Since the tests are parallel the all have the same variance. 

2.        Cov , Corr , Var Varì j ì j ì jY Y Y Y Y Y    

3.    Rel Corr ,i i jY Y Y  
 

 Exercise 4-29: Validity-reliability paradox II: 

 Given: The model of Figure 4-46, with n parallel tests, 

1 2, , , nY Y Y , and a criterion C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-46: Structural equation model used to illustrate the validity-

reliability paradox. 

 Show that the reliability  Rel Y  of the sum of the test scores 

1 2 nY Y Y Y     is given by: 

 

 
2

2 2
Rel

n
Y

n








  
. 
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 

C Y1 Y2 Yn … 

1 2 n C 

1 1 1 1 

1 1 1 C 

    

 

 Show that the correlation  Corr ,C Y  between the criterion C 

and the sum 1 2 nY Y Y Y     is given by: 

 
 

2
2 2 2 2

Corr ,

C

C

C

C Y

n


 



      




 

 

 

 Exercise 4-30: Validity-reliability paradox III: 

 Given: The model of Figure 4-47, with n parallel tests, 

1 2, , , nY Y Y , and criterion C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-47: Structural equation model for illustrating the validity-re-

liability paradox. 

 Show that the correlation  Corr ,C Y  between the criterion C 

and the sum 1 2 nY Y Y Y     is given by: 

 
 

2 2
2

2 2

Corr ,

1C

C

C

C Y

n




 
   

 

 

 

 

 

 Exercise 4-31: Estimating and testing of mean structures: 

 Given: 

Four measures of the sensitivity parameter da of the Gaussian 

signal detection model (cf. Excel-File: Data.xlsx, Sheet: SDT 

Data): 

 1. SDT6.da: Estimated parameter da from new-old recogniti-

 on using a 6-point rating scale. 

 2. SDT4.da:  Estimated parameter da from new-old recognition 

 using a 4-point rating scale. 
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 3. AFC4.da: Estimated parameter da from new-old forced 

 choice recognition with repeated choices compri-

 sing 4 choice options (on old and 3 new items). 

 4. AFC3.da: Estimated parameter da from new-old forced 

 choice recognition with repeated choices compri-

 sing 3 choice options (one old and 2 new items). 

 Estimate the following models and report the fit statistic G2 

with associated df and p value, as well as RMSEA: 

 (a) The partial -equivalent model assuming equal loadings 

and intercepts (of the observed variables) for the two esti-

mated parameters resulting from the two rating tasks on 

the one hand and, on the other hand, the two estimated pa-

rameters resulting from the two force choice tasks (all 4 

measures are assumed to be congeneric). 

 (b) The -equivalent model, by constraining the intercepts of 

the 4 measures to be equal. 

 (c) The strictly parallel model, by constraining the intercepts 

of the 4 measures to be equal. 

 (d) The strictly parallel model, by constraining the intercepts 

of the 4 measures to be zero, and letting, instead, the inter-

cept of the latent construct to be estimated freely. 

 Which model would you prefer? 

 Hint: 

 Model (c) and (d) should result in the same fit indices. 

5. Probabilistic Test Theory (PTT) 

The following chapter discusses probabilistic test models. These mo-

dels are used for modeling probabilities of response categories. The 

term response category refers to two different types of events: 

1. The probability of a correct response (e.g. on a multiple choice 

test). In this case the response category of interest differs from the 

response options associated with an item. 

2. The probability of the different response options available for the 

item. In this case the response categories of interest correspond to 

the response options that are available for the participants. 

The Birnbaum models presented in Section 5.2 are used for modeling 

the probabilities of correct responses on different items. The ordered 

categories response models, Samejima’s (1969) graded response mo-

del as well as Master’s (1982) partial credit model, are used for model-

ing the distribution of ordered response categories (Section xxxx). 

Previously to discussing specific models and methods the relationship 

between classical and probabilistic test models will be discussed. 
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5.1 Introduction: Classical and Probabilistic Test Models 

Figure 3-1 depicts the general psychometric test model that encompas-

ses the classical and the probabilistic test models as special cases. For 

convenience the models has been reproduced in Figure 5-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1: Basic structure of a psychometric model. 

The difference between the linear structural equation model used for 

modeling the test models of CTT and the PTT models consists in the 

addition of a non-linear response function for PTT models that maps 

the value of the latent response processes into the range  0,1  (cf. the 

sigmoid curves at the bottom of Figure 5-1). Thus both models assume 

response processes 1 2, , , n    that are linear function of the exoge-

nous variables. These response processes can be modeled by a set of 

linear equations: 

1 1 11 1 12 2 1 1

2 2 21 1 22 2 2 2

1 1 2 2

p p

p p

n n n n np p n

ξ

ξ

ξ

           

            

            

   

   

   

 (5-1) 
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 Notation 5-1: Symbols for denoting intercept parameters: 

 

In this chapter the intercept parameters are denoted by the let-

ter   whereas in Section 4.6 the letter   was used. This 

change of notation is due to the fact that the letter   is used 

to denote the slopes of the item response functions. 

In case of CTT the response processes 1 2, , , n    are identical to the 

observed responses: 1 1 2 2, , , n nY Y Y     . By contrast, for PTT 

models the response processes are itself latent variables (hidden 

responses) that are mapped on the model predicted response probabili-

ties by means of a non-linear function. Consequently the two types of 

models differ only with respect to the presence of a response function. 

This is due to the fact that PTT models are used for modeling proba-

bilities of response categories whereas CTT models are used for mo-

deling means and (co-) variances. 

5.2 Modeling the Probabilities of Correct Responses: The Birnbaum 

Models 

The Birnbaum models (Birnbaum, 1968) are used for modeling the 

probabilities in case of two response categories: 1 = correct response, 

and 0 = wrong response. 

The three Birnbaum models are also called the one-parameter logistic 

(1-PL), two-parameter logistic (2-PL) and three-parameter logistic (3-

PL) models. These names are due to the fact that all three models use 

the logistic response function (cf. Chapter 3): 

 
 
 

exp

1 exp


 

 





 (5-2) 

In Equation (5-2) the symbols   represents the latent response process 

whereas   denotes the slope of the logistic function (cf. Figure 3-2 on 

page 28). 

 Notation 5-2: Using a constant to equate parameters between 

the logistic and the normal ogive model 

 

As noted in Chapter 3, the constant D 1.7  can be used to 

adjust the logistic response function to the normal ogive mo-

del. By consequence the estimated parameters of both models 

are similar. In this case the response function has the follow-

ing form: 

  
 
 

exp D

1 exp D

 
 

  





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In the subsequent presentation no constant D will be used. 

This does not provide any restriction with respect to the mo-

dels capability of fitting the data since the constant can be 

absorbed into the slope parameter  . 

The three models are nested (or embedded) in that the more complex 

model contain the simpler versions as a special cases that results by 

fixing one of more parameters (similar to the classical test models). 

The basic structure of the 1-PL and 2-PL models is depicted in Figure 

5-2 (The 3-PL model has a slightly different structure; cf. Figure 5-6 

on page 184). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2: Basic structure of the one- and two-parameter Birnbaum 

model. 

The model equation describes the probability of a correct response gi-

ven that the latent variable  takes on value . The latent variable  is 

usually interpreted as representing the examinees abilities. 

We now turn to a detailed discussion of the three models starting with 

the most simple model. 

5.2.1 The One-Parameter Birnbaum Model: Rasch Model 

The one parameter Birnbaum model is also called the Rasch model. 

The model is described by the following model equations: 

 
 
 

   
 

exp
1

1 exp

1
0 1 1

1 exp

i

i

i

i i

i

P Y

P Y P Y


  

 

      
 

. (5-3) 

The symbols have the following meaning: 
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  = value of the latent construct (ability) [Person para-

meter]. 

i  = difficulty of item i [Item parameter]. 

 1iP Y    = the probability of a correct response  1iY   given a 

specific value   on the latent construct (ability). 

 0iP Y    = the probability of an incorrect response  0iY   for 

item i given a specific value   on the latent ability. 

Note that the model in Equation (5-3) is but a special case of the mo-

del in Equation (5-2) with 1i    1, ,i n . The latent response 

processes are given by (cf. Figure 5-2): 

i i    (5-4) 

Figure 5-3 depicts the item characteristic curves (ICC) for five items 

with the difficulty parameters 1 2   , 2 1   , 3 0  , 4 1  , and 

5 2  . The item characteristic curve of an item specifies the probabi-

lity of a correct response to the item as a function of the latent ability 

variable  . The ICCs of the items conforming to the Rasch model ex-

hibit the following characteristics: 

1. The curves all have the same slope. The curves of the single 

items are thus parallel, i.e. they are shifted versions of the same 

curve. 

2. The effect of the difficulty parameter consist in shifting the 

curves: Curves representing smaller values of   are located on 

the left and those with higher value are located on the right. By 

consequence, for a fixed value of the latent ability, the probabi-

lity of a correct response decreases with  . This justifies the 

interpretation of   as a difficulty parameter. 

3. By contrast, the probability of a correct response increases with 

the value of the latent ability variable  . 

4. If the value of the latent construct equals the difficulty parame-

ter    , the probability of a correct response is 0.5 (cf. the 

grey lines in Figure 5-3). 
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Figure 5-3: Rasch model: Item characteristic curves for the five items 

with difficulty parameters i. 

The Rasch model incorporates a specific characteristic that renders it 

particularly attractive. This will be discussed next. 

5.2.1.1 LOGIT TRANSFORMATION AND SPECIFIC OBJECTIVITY 

The logit transformation is the inverse of the logistic function underly-

ing the Birnbaum models. It is given by the equation 

 
 

1
log

0

i

i

i

P Y

P Y

  
  

   

. (5-5) 

The function log() represents the natural logarithm that is the inverse 

of the exponential function exp(). Equation (5-5) can be verified easily 

by replacing the probabilities by the right hand side of Equation (5-3) 

and simplifying the resulting expression. 

 Notation 5-3: Logits 

 

The fraction    1 0i iP Y P Y     of the two probabilities 

is called odds. The logarithm of this fraction is called loga-

rithmic odds or log odds. The term logit is simply an abbrevi-

ation for logarithmic odds. 

The logit transformation thus transforms the probability of a correct 

response back to the latent response process. By consequence, the lo-

gits are linear functions of the latent ability variable as well as of the 

difficulty parameter. Figure 5-4 depicts the logits for five items with 

the same difficulty parameter as in Figure 5-3 as a function of the la-

tent ability. 
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Figure 5-4: Logit of correct vs. incorrect responses as a function of 

latent ability for items with different difficulty parameters 

i (Rasch model). 

Using logits reveals a characteristic of the Rasch model that has been 

termed specific objectivity. 

 
Concept 5-1: Specific objectivity: 

 
Specific objectivity in the context of psychometrics comprises 

two types of invariant comparisons: 

 
(1) Comparisons between persons are invariant with respect 

to the test items used to measure them. 

 
(2) Comparisons of items are invariant with respect to the ex-

aminees used to calibrate them. 

 

This means, that for comparing examinees it does not matter 

which items are used for the comparison. Similarly, for com-

paring items it should be irrelevant to which examinees these 

items have been applied. In each case the outcome has to be 

the same. 

The sort of invariances required by specific objectivity holds on the 

logit scale. Specifically, differences between logits of different partici-

pants tested on the same item does not depend on the item used for 

comparison: 

 
 

 
 

   1 2

1 2

1 2

1 2

1 1
log log

0 0

i i

i i

i i

P Y P Y

P Y P Y

      
         

         

  

 (5-6) 
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The invariance of the person comparison is evidenced by the fact that 

the difference of the logits for different examinees with abilities 1  

and 2  does not depend on the item (difficulty) parameter i . 

Similarly, the difference between the logits for two different items i 

and j, applied to the same participant (or to different participants with 

the same ability level), does not depend on the value of the ability: 

 
 

 
 

   
11

log log
0 0

ji

i j

i j

j i

P YP Y

P Y P Y

    
      

        

  

 (5-7) 

The two types of invariances can be read off directly from Figure 5-4: 

1. Invariance of person comparisons: 

Select two values 1  and 2  (on the x-axis). Since the curves are 

parallel lines with identical slopes the difference of the logits (on 

the y-axis) is the same, independently of which item curve is cho-

sen. 

2. Invariance of item comparisons: 

Select two curves (straight lines). It becomes immediately clear that 

the vertical separation between the curves is always the same, 

independently of the level of ability (= the value on the x-axis) 

chosen. The difference depends only on the separation between the 

two curves. This is due to the fact that the curves are straight lines 

having the same slope. 

According to the Rasch model item difficulties and persons’ abilities 

can be placed on the same latent scale. Consequently, the Rasch model 

enables a comparison of a person’s ability with the difficulty of vari-

ous test items or with a standard of comparison. Thus, statements are 

possible about how far the person is located above or below the stand-

ard of comparison. 

Due to the characteristic of specific objectivity and the possibility of 

comparing item characteristics (difficulties) with persons’ abilities, a 

set of test items that conform to the Rasch model represents an ideal 

measurement instrument for measuring the latent ability construct. 

This characteristic is comparable to that of parallel items in CTT. 

Unfortunately most tests do not conform to the Rasch model, and, 

thus, require more complex measurement models. The two parameter 

Birnbaum model constitutes a generalization of the Rasch model that 

enable a more general application. 

5.2.2 The Two-Parameter Birnbaum Model (2-PL) 

The 2-PL model extends the Rasch model by including an item speci-

fic discrimination parameter i . The resulting model equation is gi-

ven in Equation (5-8): 
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. (5-8) 

The discrimination parameter i  affects the slope of the item charac-

teristic curve as illustrated in Figure 5-5. The figure exhibits two items 

with the same difficulty parameter  1 2 0   , yet with different dis-

crimination parameters: 1 1   and 2 2  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5: 2-PL model: ICC of two items with different discriminati-

on parameters. The item difficulty is  = 0 for both items. 

The slope of the ICC is higher for the item with the greater discrimina-

tion parameter. The item with the greater slope exhibits a higher dis-

crimination (difference in the probability of correct solutions) between 

two participants whose level of ability is close to the difficulty of the 

item. However, for participants with ability levels far from the item 

difficulty the discriminating power of the item is lower than that of the 

item with a smaller discrimination parameter. 

Note also that the relative difficulty of the two items depends on the 

level of ability of the participants: For participants with an ability be-

low the item difficulty parameter, the item with higher discrimination 

is more difficult, i.e. the probability of a correct response is lower than 

for the item with lower discrimination parameter. The opposite pattern 

is found for participants with ability levels above the difficulty para-

meter. 

Unfortunately, the 2-PL model does not exhibit the nice measurement 

properties of the Rasch model: There are no invariant comparisons of 
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items or persons (specific objectivity). In addition there does not exist 

a common latent scale on which to locate abilities and items. The 2-PL 

model can be extended by adding a parameter that enables the model-

ing of guessing. 

5.2.3 The Three-Parameter Birnbaum Model (3-PL) 

The 3-PL model incorporates an additional parameter i  that repre-

sents the probability of guessing the right answer for item i. The model 

is represented by the following equation: 

   
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exp
1 1

1 exp

1
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i
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           
     

 
      

     

. (5-9) 

According to the model, a correct answer for item i may be achieved 

by either correct guessing or by means of a response process that con-

forms to the 2-PL model. The probability of guessing the correct ans-

wer is i  whereas the probability i  of a correct answer in case of no 

correct guessing is given by the model equation of the 2-PL model. 

The structure of the model is illustrated in Figure 5-6. 

Figure 5-7 exhibits the ICCs of two items one with no correct guessing 

 1 0  , and the other one with a correct guessing probability of 

2 0.2  . The other two item parameters (difficulty and slope parame-

ter) are the same for both items. The ICCs exhibit two characteristics 

that are specific to the 3-PL model: 

1. The minimal probability of a correct response corresponds to the 

probability i  of guessing. By contrast, the minimal probability of a 

correct response is zero for the 1-PL and 2-PL models. 

2. The probability of a correct response in case of the ability  being 

identical to the item difficulty i  is no longer 0.5 in case of gues-

sing. This is also in contrast to the 1-PL and 2-PL model. 
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Figure 5-6: 3-PL model: The model structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-7: 3-PL model: ICC of two items with different guessing pa-

rameters. The item difficulty parameter is  = 0 and the 

discrimination parameter is  = 0 for both items. 

5.3 The Information Functions 

The information function of a test item and a test, respectively, serves 

a similar function as the reliability in CTT. It provides for each latent 

score value of the psychometric information that the item or test can 

provide for the specific latent score. Formally, the information is given 

by the following equation (cf. Embretson & Reise, 2009, p.184): 

 
2

2 1
, ,

1

i i i
i i i i

i i

P P
I

P

   
        

  
  (5-10) 

The symbols have the following meaning: 

Item i 

correct:  
correct 

guessing 

no correct 

guessing 

1 

correct:  

wrong:  



 

 

Chapter  5: PTT 185 

 

 

 

 

  = value of the latent construct (ability). 

i  = difficulty of item i. 

i  = slope parameter of item i. 

i  = guessing parameter of item i. 

 , ,i i iI      = the information of item i with the given item para-

meters for the latent construct score  . 

iP  = the probability of a correct response to item i for a 

given latent score (cf Equation 5-9). 

 
 

 

exp
1

1 exp

i i

i i i

i i

P
         
     

. 

 

 Notation 5-4: Functions with parameters 

 

 , ,i i iI      is a function of the latent construct scores   

for item i that is characterized by the item parameters i , i  

and i . The latter are fixed for a given item. Thus they are 

located on the right side of the slash. 

 

 

 

 Exercise 5-1: Item characteristic curves (ICC) of the Rasch 

model 

Given: 10 test items Y1 – Y10 

 The difficulty parameters of the 10 items are: 

1 = –1.603, 2 = –0.958, 3 = 0.909, 4 = 0.705, 5 = –0.115, 

6 = 0.645, 7 = 1.180, 8 = –1.490, 9 = 1.413, 10 = –0.686. 

 The slope parameter are i = 1.0 (i = 1, 2, …, 10). 

 No guessing takes place: i = 1.0 (i = 1, 2, …, 10). 

Create a figure of the item characteristic curves of the ten items in 

the range of –5.0 ≤  ≤ 5.0. 

Hint: 

Use the function ICC.Rasch.matrix() of the PTT toolbox for 

computing the values of the ICC curves and the function matplot() 

for plotting the curves. 
 

 Exercise 5-2: Item characteristic curves (ICC) of Birnbaum 

models 

Given: 3 test items Y1 – Y3 
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 The difficulty parameters of the 3 items are: 

1 = –1, 2 = 1, 3 = –1. 

 The slope parameter are: 

1 = 0.5, 2 = 1.0, 3 = 1.0. 

 The guessing parameters are: 

1 = 0, 2 = 0.25, 3 = 0. 

Create a figure of the item characteristic curves of the three items in 

the range of –5.0 ≤  ≤ 5.0. 

Hint: 

Use the function ICC.Rasch.matrix() of the PTT toolbox for 

computing the values of the ICC curves and the function matplot() 

for plotting the curves. 

 

 

 
 

 Exercise 5-3: Conditional probability of a response pattern 

for the two-parameter Birnbaum-model 
Given: 

 5 test Y1 – Y5 

 The item parameters of the five items are: 

1 = 1.0, 2 = 1.7, 3 = 1.2, 4 = 0.9, 5 = 0.5, 

1 = 1.0, 2 = 2.0, 3 = 1.5, 4 = 2.5, 5 = 0.8. 

The following response pattern has been observed: 

Y = (1, 0, 1, 0, 1) (1 = correct, 0 = wrong). 

Compute the conditional probability   1,0,1,0,1 1.7P   Y  

for the two-parameter Birnbaum-model. 

Use the function P.Rasch() of the PTT toolbox to check the cor-

rectness of your computation. 
 

 Exercise 5-4: Information functions of the Rasch model 

Given: 10 test items Y1 – Y10 

 The difficulty parameters of the 10 items are: 

1 = –1.603, 2 = –0.958, 3 = 0.909, 4 = 0.705, 5 = –0.115, 

6 = 0.645, 7 = 1.180, 8 = –1.490, 9 = 1.413, 10 = –0.686. 

 The slope parameter are i = 1.0 (i = 1, 2, …, 10). 

 No guessing takes place: i = 1.0 (i = 1, 2, …, 10). 

Create a figure of the information functions of the single items as 

well as of the whole test in the range of –5.0 ≤  ≤ 5.0. 
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Hint: 

Use the function I.Rasch.matrix() of the PTT toolbox for 

computing the values of the ICC curves and the function matplot() 

for plotting the curves. 
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Appendix A: lavaan Instructions 

In this appendix instructions concerning the usage of the R-package 

lavaan for provided. As aworking example Ex. 4-5 on p. 77 is used. 

1. Setting up the model 

A model is created by specifying the latent variables on the left hand 

side and the variables representing the tests on the right-hand side. For 

example, to set up a congeneric model with 4 tests, 1 2 1 2, , ,X X Y Y , the 

following equation is specified: 

H4 <- 'eta =~ X1 + X2 + Y1 + Y2' 

The term 'eta =~ X1 + X2 + Y1 + Y2' sets up the model: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-1: SEM model H1. 

This model is assigned to the variable H4 (cf. the R command above). 

Note that the whole model specificaton has to be encosed between 

apostrophes. 

By default lavaan assumes that the first loading coefficient is fixed at 

one and the variance of the latent construct is assumed to be zero. 

A model with more thatn a single latent variable is set up by specify-

ing an equation for each latent variable, for example: 

H3 <- 'eta1 =~ X1 + X2 

       eta2 =~ Y1 + Y2' 

sets up the model: 
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Figure A-2: SEM model H3. 

In order to fix the loadings to a specific value, say 1, the variable name 

multiplied by the value has to be specified, e.g.: 

H1 <- 'eta1 =~ X1 + 1*X2 

       eta2 =~ Y1 + 1*Y2' 

The resulting model looks like this: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-3: SEM model H1. 

To set equality constraints on the loading coefficients, the same names 

are used. The following model dspeicification: 
H2 <- 'eta =~ NA*X1 + 1*X1 + 1*X2 + lambda*Y1 + 

lambda*Y2' 

results in the following model: 
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Figure A-4: SEM model H2. 

The specification: 

NA*X1 

tells the program to not fix the loading coefficient of variably X1 to 1. 

  Comment A-1: A problem of lavaan: 

 The specification above: 

 
'eta =~ NA*X1 + 1*X1 + 1*X2 + lambda*Y1 + 

lambda*Y2' 

 

does not appear to be very logical since it tells the program to 

not set the first loading coefficient to 1 and then sets the coef-

ficient to 1. A more logical specification: 

 'eta =~ X1 + 1*X2 + lambda*Y1 + lambda*Y2' 

 
does not work, however. This seems to be an internal problem 

of lavvan. 

2. Fixing Variances and Covariances of Latent Constructs and 

Error Terms 

The parallel test model requires that the error variances are all equal. 

This is accomplished by adding additional terms in the model specifi-

cation, for example: 

H2 <- 'eta =~ NA*X1 + 1*X1 + 1*X2 + lambda*Y1 + 

lambda*Y2 

       X1 ~~ e1*X1 

       X2 ~~ e1*X2 

       Y1 ~~ e2*Y1 

       Y2 ~~ e2*Y2' 
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tells lavvan to set the varainces of the error terms of X1 and X2 to be 

equal by using the same coefficient e1 in both cases. Similarly, the 

variances of Y1 and Y2 are specified to be equal by using the same co-

efficient e2. Since the two coefficients are not equal, the error 

variances of the four variables are not the same. Using the same term, 

for example: 

H2 <- 'eta =~ NA*X1 + 1*X1 + 1*X2 + lambda*Y1 + 

lambda*Y2 

       X1 ~~ e*X1 

       X2 ~~ e*X2 

       Y1 ~~ e*Y1 

       Y2 ~~ e*Y2' 

tells the program to set all four error variances to be the same. 

The fixing of variances and covariances of latent constructs proceeds 

in a similar fashion, for example: 

H2 <- 'etaX =~ NA*X1 + lambda1*X1 + lambda1*X2 

       etaY =~ NA*Y1 + lambda2*Y1 + lambda2*Y2 

 

# Fix covariance structure of latent constructs 

 

etaX ~~ 1*etaX   # Var(etaX) = 1 

       etaY ~~ 1*etaY   # Var(etaY) = 1 

       etaX ~~ 1*etaY'  # Cov(etaX, etaY) = 1 

The resulting model corresponds to the congeneric model since the 

varainces of the latent constructs are fixed to 1, and, thus, the covari-

ance between the two constructs is equal to the respective correlation. 

By consequence, setting the covariance to 1 amounts to setting the cor-

relation to 1. As a result, the two constructs have the same variances 

(and means) and a perfect correlation. They can thus be not differenti-

ated, and the model corresponds to a model with a single latent con-

struct only. 

3. Fixing and Constraining Intercept Parameters 

The -equivalent as well as the strictly parallel model assume that the 

means of the measures are all the same. This can be achieved by 

setting the intercepts of the measures to be equal. The following piece 

of R-code illustrates how to tell lavaan to constrain the intercepts of 

the four observed variables X1, X2, X3, and X4 to be equal. 

X1 ~ 1 

X2 ~ equal("X1 ~ 1") * 1 

X3 ~ equal("X1 ~ 1") * 1 

X4 ~ equal("X1 ~ 1") * 1 

In the first line an intercept is assigned to variable X1. Thus the 

program now takes into account the mean structure. The following 

lines tell the program to set the intercepts of the other variables equal 

to that of X1. 
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4. Estimating the Model 

For estimating the model different fucntions are available. We use the 

function cfa() (confirmative factor analysis) which is a simplified 

version of the more general function lavvan(). The variable of the 

model together with additional parameters are passed to the function, 

for example: 

H1.Fit <- cfa(H1, meanstructure = F, sample.cov = 

data.mat, sample.nobs = 649, likelihood 

= "Wishart") 

The arguments passed to the function have the followoing meaning: 
H1 The name of the specified model. 

meanstructure = F Only covariances are estimated and no means. 

sample.cov = 

data.mat 
A sample covariance matrix, called data.mat 

and a data frame with raw data is provided. 

sample.nobs = 649 Sample size (only required in case of a 

covariance and mean vector is provided. 

likelihood = 

"Wishart" 
Maximum likelihood estimation should be 

performed. 

Further arguments concerning specific fit options: 

missing = "fiml" In case of missing data this option tells the 

program to use full information likelihood 

(which is usually the best method). 

data = data.file If a data.frame containing the raw data of the 

different measures (instead of a covariance 

matrix) the name of data frame (in the actual 

case namede data.file) is given to the data 

argument. 
 In this case the argument sample.nobs is not 

required since the program computes the sam-

ple size on the basis of the entries in the data 

file. 

5. Extracting Results 

A list of functions for displaying results is provided in Rosseel (2012), 

Table 4, on page 13. Here we focus on the function inspect() that 

enables the extraction of different entities from the fit object. The 

function has the following basic structure: 

inspect(object, what) 

where: 

object The name of the object returned by the fit 

function: cfa(), lavaan(). 

what Tells the function which information to ex-
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tract. 

In following we discuss the extraction of fit indices and of the matrices 

with model parameters. 

Extraction of Fit Indices 

The extraction of fit indices is performed by passing the value "fit" 

to the argument what of the function inspect(), for example: 

H1.Res <- inspect(H1.Fit, what = "fit") 

The function returns a vector with different fit indices together with 

other information, like degrees of freedom. Relevant indices as well as 

their postion within the vector are shown in Tab A-1. 

Tab. A-1: Important Fit Indices Returned by the Function Inspect, and 

their Positions within the Vector of Results. 

Fit index Position Comment 

npar 1 Number of free parameters. 

G2 3 Chi-square statistic. 

df 4 Degrees of freedom associated with G2. 

p 5 P-value associated with G2. 

AIC 19 Akaike’s information criterion. 

BIC 20 Bayesian information criterion. 

N 21 Number of observations. 

RMSEA 23 Root mean squared error of approximation. 

RMSEA (L) 24 Lower bound of 90% CI of RMSEA. 

RMSEA (U) 25 Upper bound of 90% CI of RMSEA. 

RMSEA (p) 26 P-value associated with RMSEA. 

Thus, the command: 

inspect(H1.Fit, what = "fit")[3:5] 

retruns a vector with the fit index G2, the associated degrees of free-

dom and the associated p-value. 

Extraction of Matrices with Parameters 

The extraction of parameter matrices is performed by passing the 

value "est" to the argument what of the function inspect(), for ex-

ample: 

inspect(H3.Fit, what = "est") 

returns the following list of matrices: 

$lambda 

    eta1  eta2 

X1 1.000 0.000 

X2 1.027 0.000 
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Y1 0.000 1.000 

Y2 0.000 1.019 

 

$theta 

   X1     X2     Y1     Y2     

X1 30.139                      

X2  0.000 26.931               

Y1  0.000  0.000 24.876        

Y2  0.000  0.000  0.000 22.561 

 

$psi 

     eta1   eta2   

eta1 56.258        

eta2 57.350 72.409 

The matrix lambda denotes the matrix Λ  of loading coefficients. 

theta denotes the covariance matrix Θ  of the error terms. The ma-

trix psi denotes the covariance matrix Φ  of the latent constructs. 

It is easy to convert the output covariance matrices to simple R matri-

ces, for example, the following sequence of command: 

H3.Mat <- inspect(H3.Fit, what = "est") 

Psi <- matrix(H3.Mat$psi, nrow(H3.Mat$psi)) 

extracts the list of matrices (first line). The command in the second 

line converts the matrix psi to an R matrix (i.e. an object of class 

matrix) that looks like this: 

         [,1]     [,2] 

[1,] 56.25848 57.34987 

[2,] 57.34987 72.40918 

These matrices are quite useful in reliability computations (cf. Chapter 

4.4). 


