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Post-translational dysregulation
of glucose uptake during
exhaustive cycling exercise in
vastus lateralis muscle of healthy
homozygous carriers of the ACE
deletion allele Q1

Q2
Q3
Q4Martin Flück1,2*, David Vaughan1, Jörn Rittweger1,3 and

Marie-Noëlle Giraud2

1Institute for Biomedical Research Into Human Movement and Health, Manchester Metropolitan
University, Manchester, United Kingdom, 2Heart Repair and Regeneration Laboratory, Department
EMC, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland, 3Department of
Muscle and Bone Metabolism, Institute of Aerospace Medicine, German Aerospace Center, Cologne,
Germany

Homozygous carriers of the deletion allele in the gene for angiotensin-

converting enzyme (ACE-DD) demonstrate an elevated risk to develop

inactivity-related type II diabetes and show an overshoot of blood glucose

concentration with enduring exercise compared to insertion allele carriers. We

hypothesized that ACE-DD genotypes exhibit a perturbed activity of signaling

processes governing capillary-dependent glucose uptake in vastus lateralis

muscle during exhaustive cycling exercise, which is associated with the

aerobic fitness state. 27 healthy, male white Caucasian subjects (26.8 ±

1.1 years; BMI 23.6 +/− 0.6 kg m−2) were characterized for their aerobic

fitness based on a threshold of 50 ml O2 min−1 kg−1 and the ACE-I/D

genotype. Subjects completed a session of exhaustive one-legged exercise

in the fasted state under concomitant measurement of cardiorespiratory

function. Capillary blood and biopsies were collected before, and ½ and 8 h

after exercise to quantify glucose and lipid metabolism-related compounds

(lipoproteins, total cholesterol, ketones) in blood, the phosphorylation of

45 signaling proteins, muscle glycogen and capillaries. Effects of aerobic

fitness, ACE-I/D genotype, and exercise were assessed with analysis of

variance (ANOVA) under the hypothesis of a dominant effect of the insertion

allele. Exertion with one-legged exercise manifested in a reduction of glycogen

concentration ½ h after exercise (−0.046 mg glycogen mg−1 protein). Blood

glucose concentration rose immediately after exercise in association with the

ACE-I/D genotype (ACE-DD: +26%, ACE-ID/II: +6%) and independent of the

fitness state (p = 0.452). Variability in total cholesterol was associated with

exercise and fitness. In fit subjects, the phosphorylation levels of glucose

uptake-regulating kinases [AKT-pT308 (+156%), SRC-pY419, p38α-pT180/
T182, HCK-pY411], as well as cytokine/angiotensin 1-7 signaling factors

[(STAT5A-pY694, STAT5B-pY699, FYN-pY420, EGFR-pY1086] were higher in

angiotensin converting enzyme I-allele carriers than ACE-DD genotypes after
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exercise. Conversely, the AKT-S473 phosphorylation level (+117%) and

angiotensin 2’s blood concentration (+191%) were higher in ACE-DD

genotypes. AKT-S473 phosphorylation levels post-exercise correlated to

anatomical parameters of muscle performance and metabolic parameters

(p < 0.05 and │r│>0.70). The observations identify reciprocal alterations of

S473 and T308 phosphorylation of AKT as gatekeeper of a post-translational

dysregulation of transcapillary glucose uptake in ACE-DDgenotypeswhichmay

be targeted in personalized approaches to mitigate type II diabetes.

KEYWORDS

diabetes, exercise, genotype-, signalling, angiotensinQ6

IntroductionQ7

Glucose metabolism is a main source of energy production in

skeletal muscle during exercise. With the onset of exercise, there

is a rapidly enhanced metabolic conversion of glucose in

contracting skeletal muscle to yield mobile energy equivalents

in the form of ATP (Hargreaves and Spriet 2020). The enhanced

glucose use is fuelled by the degradation of glycogen stores in

muscle fibers and the import of blood-borne glucose (Richter and

Hargreaves 2013), which is supported by the hepatic release of

glucose (Kjaer 1998; Fujimoto et al., 2003; Brooks 2020).

Depending on the intensity of exercise, the rapid initial steps

of glucose metabolism by glycolysis are coupled via the oxygen-

dependent conversion of pyruvate in mitochondria to a highly

efficient, but slower, production of ATP (Baker et al., 2010).

Thereby, anaerobic and aerobic aspects of glucose metabolism

influence the rate of energy delivery to fuel excitation-contraction

coupling and consequently the fatigue resistance of power output

in contracting skeletal muscle. At the whole-body level, the

relative involvement of anaerobic and aerobic aspects of

glucose metabolism is quantifiable by indirect calorimetry

through measurable differences in the dissipated carbon

dioxide relative to inhaled oxygen (Patel et al., 2022).

Meanwhile, subjectively perceived exhaustion coincides with

glycogen depletion at the local muscle level (Impey et al., 2018).

Glucose uptake in skeletal muscle is controlled dependent on

capillary perfusion and the possibly interconnected transcapillary

glucose transport via facilitative glucose-transporter 4 (GLUT-4;

Richter and Hargreaves 2013). Both are regulated by endocrine

and haemodynamic factors, of which insulin- and contraction-

induced vasodilatation of arterioles are the main elements

upregulating capillary perfusion (Steinberg et al., 1994). Such

contraction-induced vasodilatation overrides angiotensin 2-

related (inhibitory) processes (Korthuis 2011) that produce

vasoconstriction and lower glucose-uptake via antagonistic

actions on vasodilatative bradykinin/NO signaling in skeletal

muscle (Henrickson and Jacob 2003); as pointed out by the

pharmacological inhibition of angiotensin converting enzyme

(ACE) that produces the octapeptide angiotensin 2 through

cleavage of the precursor peptide, angiotensin 1. During

physical exercise, the vasoconstrictor actions of angiotensin 2,

whose blood concentration is increased with exercise intensity,

are mitigated locally by vasodilatory actions of contraction

(Clifford and Hellsten, 2004; Korthuis 2011). Skeletal muscle

is probably the largest contributor to glucose homeostasis during

exercise with contraction-induced glucose uptake (Surapongchai

et al., 2018), suggesting a critical implication of angiotensin 2-

related differences for glucose handling.

Homozygous carriers of the deletion allele (D) in the ACE

gene (i.e., ACE-DD genotypes), that shows responsible for the

production of angiotensin, typically demonstrate an enhanced

potential for the production of angiotensin 2 compared to

insertion allele (I) carriers of the ACE gene, i.e., ACE-ID and

ACE-II genotypes (reviewed by Vaughan 2013; Vaughan et al.,

2016). Intriguingly, angiotensin 2 levels and the relatively

frequent ACE-I/D genotype have been associated with

diabetes and insulin resistance (Nicola et al., 2001; Feng et al.,

2002; Chu and Leung 2009). For instance, ACE-DD genotypes

demonstrate an elevated risk of developing inactivity-related type

II diabetes, which is characterized by a substantially elevated

blood concentration of glucose in the fasted state at rest (Feng

et al., 2002). Interestingly, we identified that ACE-DD genotypes

demonstrate unusually high levels of blood glucose concentration

compared to insertion allele carriers (ACE-ID/-II) with

exhaustive endurance exercise to pre-diabetic levels

(Valdivieso et al., 2017). The observed rise in blood glucose

concentration was related to the failure of ACE-DD genotypes to

elevate capillary perfusion with exhaustive exercise (van Ginkel

et al., 2015), and possibly lower capillary density in peripheral

skeletal muscle (Vaughan et al., 2016). The formerly mentioned

genotype differences in regulative and capacitive aspects of

capillary supply in peripheral tissues, promote an excessive

depletion of muscle glycogen, and citrate cycle-related muscle

metabolites in ACE-DD genotypes, which depends on the

individual aerobic fitness (Valdivieso et al., 2017).

There is a wealth of data on the preventive or delaying effect

of physical activity against type II diabetes (Thomas et al., 2006;

World Health Organization 2013 Q8; Smith et al., 2016), and a

wealth of data is available on the molecular mechanism

underpinning exercise- and insulin-induced glucose uptake
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and its relation to type II diabetes (Stanford and Goodear, 2014;

Carson 2017). In the last 2 decades, there has been a gain in

knowledge on the eminent role of angiotensin 2-modulated

(glucose) metabolism in skeletal muscle and its association

with diabetes (Nicola et al., 2001; Henriksen and Jacob 2003;

Chu and Leung 2009; Korthuis 2011). The contribution of

angiotensin to the observed variability in the glucose

metabolism with exercise, and the role played by physical

fitness-related differentiation of skeletal muscle composition

(Dengel et al., 2002; Schüler et al., 2017; Brooks 2020), is only

incompletely understood at the mechanistic level. The implicated

molecular processes possibly involve altered intracellular

angiotensin and insulin signaling, which may lower glucose

uptake and expression of glucose metabolism associated gene

alike reported for the pharmacological inhibition of ACE

(Henriksen and Jacob 2003; Mathes et al., 2015). Intriguingly,

variability in anatomical and functional aspects of aerobic

glucose and lipid metabolism in contracting knee extensor

muscle is associated with the ACE-I/D genotype in interaction

with the aerobic fitness state (Vaughan et al., 2013; Valdivieso

et al., 2017; Gasser et al., 2022). For instance, higher increments

in blood glucose concentration, respiration exchange ratio and

glycogen depletion have been reported for ACE-DD genotypes

during exhaustive one-legged exercise of healthy individuals,

when conversely a higher degree of muscle deoxygenation and

higher volume densities of mitochondria and intra-myocellular

lipids are detected in aerobically fit ACE I-allele carriers. The

observed differences advocate that aerobically fit ACE I-allele

carriers are endowed with an improved capacity for

intramuscular import and aerobic metabolization of blood-

borne glucose (and lipid) during exhaustive exercise compared

to non-carriers of the ACE I-allele. These observations motivate

the hypothesis that ACE-DD genotypes exhibit compared to

ACE I-allele carriers a perturbed capacity to activate signaling

processes governing capillary-dependent glucose uptake in

contracting skeletal muscle during exhaustive cycling exercise,

which is associated with the state of aerobic fitness. For testing

this assumption, we monitored blood metabolites and muscle

glycogen concentration and the phosphorylation levels of forty-

five proteins of intracellular signaling before and after a one-

legged bout of exhaustive exercise. We assessed whether

observable differences in exercise-induced responses were

associated with muscle capillarisation and the ACE-I/D

genotype in healthy male subjects.

Methods

Subjects

Twenty-seven healthy, male white Caucasian subjects (26.8 ±

1.1 years; BMI:23.6 +/− 0.6 kg m−2) were recruited from White

British men of the Greater Manchester Area. Exclusion criteria

were smoking, long-term ill-health, an age below 18 years or over

40 years, and a relative VO2max below 40 ml O2 min−1 kg−1 or

above 60 ml O2 min−1 kg−1 (as determined post-hoc). The Ethics

committee of Manchester Metropolitan University specifically

approved this study. The investigation was conducted according

to the principles expressed in the Declaration of Helsinki and

published guidelines (Ramos-Jimenez et al., 2008; Harriss and

Atkinson 2011). Informed consent, written and oral, was

obtained from the participants.

Design

Subjects reported to the laboratory on two occasions to

estimate aerobic capacity during one session of two-legged

cycling exercise and one session of exhaustive one-legged

cycling exercise in the fasted state in the morning to test the

metabolic response. The two visits were separated by at least

2 days. Oxygen uptake, respiration exchange ratio (RER), and the

blood concentrations of selected metabolites, i.e., glucose,

triacylglycerol (TAG), total cholesterol (T Cholesterol), low-

(LDL) and high-density lipoprotein (HDL), total ketone

(ketones), were monitored in samples being collected prior to,

and ½, 3, and 8 h after exercise as described (Valdivieso et al.,

2017). Concomitantly, biopsies were collected from m. Vastus

lateralis of the non-exercised leg immediately before exercise, and

½, 3, and 8 h after exercise from the exercising leg, respectively.

Between the first and last biopsy subjects rested under

supervision without physical activity reading a book, watching

a movie, listening to music, or surfing the web, and consuming a

meal based on sandwiches and water, if desired. The biopsy

material was used to quantify muscle capillarisation, and the

concentration of glycogen and specific phosphorylation of a

panel of 45 proteins involved in key intracellular signaling

processes was quantified with a phospho-kinase array

(Proteome Profiler, R&D Systems). In the two-legged exercise

test, the aerobic fitness state was determined post-hoc based on

VO2max values below (unfit) or above (fit) 50 ml O2 min−1 kg−1,

respectively. The ACE-I/D genotype was determined, in a

double-blind manner, with allele specific polymerase chain

reactions on genomic DNA being isolated from a buccal swap

collected before the one-legged exercise. The MOS 36-Item

Short-Form Health Survey (SF-36) and an activity

questionnaire (Ware and Sherbourne 1992; Howley and

Franks, 2003) were completed to assess the level of physical

activity and the current medical health.

Two-legged cycling exercise

Subjects carried out an incremental test of exercise to

exhaustion on a stationary cycle ergometer (Ergometrics

Ergoline 800, Jaeger, Bitz, Germany) in an air-conditioned
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room at 23°C with the concomitant assessment of

cardiopulmonary parameters essentially as described

(Vaughan et al., 2016). On this occasion age, body weight and

height were measured, and the BMI was calculated during an

initial visit. Then subjects completed a lifestyle questionnaire

composed of 31 questions as modified from a previous short-

form 36 (Ware et al., 1991).

Cardiopulmonary measurements were carried out through a

mouthpiece with a breath-by-breath technique using a stationary

testing device (MetaLyser® 3B, Cortex, Leipzig, Germany). The

saddle length was adjusted to a position where the knee was

extended at an approximately 175° angle when subjects were

seated with the shoe heel placed on the pedal. The test started

with 2 min of baseline recording followed by 3 min warm-up at

80 W and 80 rpm. The intensity was increased by 25 W every

minute until exhaustion. An intensity level was considered

achieved when 80 rpm were held for at least 50 s. Respiration

was followed during a cool-down phase of 3 min at 80 W and

80 rpm followed by 2 min of rest. Test results were recorded at 3 s

intervals with the MetaSoft® software (Cortex, Leipzig, Germany)

and analysed offline with the method “maximal oxygen uptake’

for absolute and body mass-related VO2max and RER following

the exercise. VO2max, and the corresponding maximum aerobic

power output (Pmax), were identified based on the criteria that

VO2 reached a plateau of a steady maximal value under the

imposed high workload, when RER was above 1.05, and before

VO2 fell off because the pedal rate fell consistently below 70 rpm

despite verbal encouragement (for a review see Flueck et al.,

2010). The VO2 values at the plateau varied within 1% of the

average values and the plateau was maintained on average over

26 s VO2max was determined as the highest mean of VO2 values

averaged over 30 s in the plateau phase. If a VO2 plateau did not

manifest during the test, the ergospirometry was repeated on a

subsequent day.

One-legged cycling exercise

Subjects reported after an overnight fast and 2 days of

reduced physical activity in the laboratory. A resting biopsy

was collected under anaesthesia from the vastus lateralis

muscle of the non-dominant leg. A 5-ml blood sample was

drawn from the Cephalic vein into a tube sprayed with dry

EDTA (K2E BD Vacutainer®, Belliver Industrial Estate,

Plymouth, United Kingdom) and placed on ice. A 2-ml

aliquot was rapidly processed to “quantify serum angiotensin

2 concentration” and determine the concentration of selected

metabolites.

Subsequently, subjects completed a one-legged exercise test

with the dominant leg on the stationary cycle ergometer

(Ergometrics Ergoline 800, Jaeger, Bitz, Germany) at a

performance-matched intensity and a set cadence of 80 rpm.

During the exercise, the pedal for the non-dominant leg was

taken off. Saddle length was set to the value used for the two-

legged exercise. The shoe of the dominant leg was attached to the

pedal with duct tape. The other leg rested on the frame in the

middle of the ergometer. Subjects initially performed a warm-up

at 15% of the predicted 2-legged Pmax, followed by 25 min of

exercise at 30% of the 2-legged Pmax before the set intensity was

ramped up in 10 W-increments per minute until exhaustion. A

3-min cool-down phase at 15% of the calculated 2-legged Pmax

was allowed at the end of the exercise. VO2, VCO2 and

ventilation were monitored with the MetaLyser® 3B system

(Cortex, Leipzig, Germany) and VO2max and maximal RER

was determined.

Genotyping

The buccal swap, collected with a cotton earbud, was frozen

at −20°C in a sealed 15 ml tube (Sarstedt; Nümbrecht; Germany).

DNA was extracted after thawing with 800 μl of methanol. The

solution was air-dried, frozen overnight at −80°C, and

resuspended in 100 μl of sterile water under heating to 65°C.

DNA was recovered in the supernatant after a centrifugation step

(5,000 g, 2 min, room temperature) and stored at −20°C. A

second investigator blinded sample codes by sticking a label

with a random, but unique, four-letter code on top. The code was

handed to a third investigator unrelated to the study.

Subsequently, the DNA samples were subjected with mock

and camouflage samples to a polymerase chain reaction to

type the ACE-I/D polymorphism according to the protocol

described by Vaughan et al. (2013). The genotyping results

were decoded through the involvement of the third

investigator once the functional test and metabolic measures

had been completed.

Biopsy

An experienced physician collected muscle samples taken

from the vastus lateralis muscle, at the point of maximal

thickness. The overlying skin was shaved and sterilised

(Videne Antiseptic Solution, Ecolab, Saint Paul, MN

United States). A sterile drape from a wound care pack

(Premier, Shermond Bunzel Retail & HealthCare Supplies

Limited, Enfiled, Middlesex, United Kingdom) ensured sterile

conditions. For local anaesthesia, 1 ml 2% Lidocaine was injected

subcutaneously. Within 5 min, a 5-mm incision was made with a

scalpel and a muscle sample was extracted and immediately

processed by a skilled investigator. For the sample point prior to

exercise, the sample was collected with a rongeur using the

conchotome technique; while post-exercise samples were

collected using a biopsy needle (TSK Acecut 11G, Emergo

Europe, The Hague, Netherlands). Firm pressure was applied

to the biopsy site until the bleeding stopped. The wound was then
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closed (Steri-Strip, 3M Health Care, Germany) and dressed

(Mepore Ultra, Molnlycke Healthcare, Sweden). Subjects were

discharged with a pressure bandage for the first 4 h after the

biopsy sample to reduce further bleeding.

Biopsy samples were rapidly frozen in liquid nitrogen while

shaking the sample. Pre-exercise samples were cut into two pieces

before being frozen; one being mounted with Tissue-Tek® O.C.T.
TMCompound (Weckert Labortechnik, Kitzingen, Germany) on

cork for histological analysis before freezing. Samples were stored

airtight in a 2-ml tube (Eppendorf) until further processing.

Measurements of muscle capillarisation

Capillaries were detected and analysed as described (van

Ginkel et al., 2015). In brief, pre-exercise biopsies were mounted,

and 14-μm thick cryosections prepared at a cutting angle

perpendicular to the major axis of muscle fibers. Capillaries

were detected based on a lectin antibody, and the section was

recorded at a ×10 magnification with an Axiocam MRC camera

operated by an Axioskop 2 mot plus stage (Carl Zeiss,

Oberkochen, Germany). Areas of the section corresponding to

0.15 mm2 where fibers were cut perpendicular and where no

holes or other irregularities were present were selected. The areas

were processed with the ImageJ software (version 1.6.0_33;

http://imagej.nih.gov/ij) according to the published settings

(van Ginkel et al., 2016) to determine the number of

capillaries per mm2 (capillary density) and the capillary-to-

fiber ratio. Additionally, the mean cross-sectional area

(MCSA) of slow (type I) and fast (type II) muscle fibers was

determined on muscle cross-sections being stained with myosin

isoform-specific antibodies as described (Vaughan et al., 2016).

The values of at least 24 representative fibers per subject were

analysed.

Muscle glycogen

Cryosections (25 μm) were prepared from muscle biopsies

and the section volume was estimated from microscopic

measures of the cross-sectional area and the height of the

sectioned tissue. An approximate of 1 mm3 tissue was

homogenised in 100 μl of a PBS/inhibitor-cocktail [1 ml PBS

+9 ml dH2O+ 1 complete Mini, EDTA-free tablet (Sigma

Aldrich, Buchs, Switzerland) in a 1.5 ml Eppendorf tube by

using a steel pistil (Behrens-Labortechnik, Germany). Total

protein content was assessed in 3 μl homogenate against a

BSA standard using the Pierce BCA Protein Assay Kit

(Thermo SCIENTIFIC, Town, United States) and quantified at

562 nm on a 96-well plate with a Synergy HT spectrometer

(BioTek Instruments Inc., Vermont United States). Glycogen was

measured on 20 μl muscle homogenate against a glycogen

standard with the Assay Kit (Abcam, Cambridge,

United Kingdom). The reaction was developed at room

temperature in a 96-well plate in the dark. The signal was

detected at 564 nm using a Synergy HT spectrometer (BioTek,

Lucerne, Switzerland). Glycogen levels were expressed relative to

the total amount of muscle protein. The coefficient of variation

for repeated measurements of the standard curve on different

days was 3.1% for BSA-based measures of protein content and

0.1% for glycogen, respectively.

Quantification of phosphorylation levels

45 proteins involved in intracellular signaling processes was

quantified with a phospho-kinase array using the standard

description (Proteome Profiler, R&D Systems). In brief, the

soluble matter was extracted from muscle biopsies by grinding

an approximate 10 mm3 biopsy material in 200 μl of ice-cold

RIPA buffer (2% Triton X-100, 1% NP-40, 300 mM NaCl,

20 mM Tris base, 2 mM EDTA, 2 mM EGTA) supplemental

protease inhibitor (complete Mini EDTA-free (Roche, Basel,

Switzerland), and phosphatase inhibitors (Phosstop, Roche,

Basel, Switzerland) with a Polytron mixer (PT1200E,

Kinematica, Lucerne, Switzerland). Soluble protein was

recovered from the supernatant of a centrifugation step at

(5,000 g, 2 min, 4°C) and the corresponding protein content

was determined with the Pierce® BCA protein assay kit

(Thermo Fischer Scientific, United States). 600 μg of soluble

protein in (from two biological replicas per time point) were

applied per pair of filter array, including two detection spots per

feature. Signal detection was carried out with enhanced

chemoluminescence and signal was recorded after an exposure

of 1 and 30 min duration with a Fusion Solo S Edge

Chemoluminescence imaging system (Vilber, Marne-la-Vallée,

France). Signals were quantified with Quantity One software

(Biorad, Cressier, Switzerland). The signal was corrected for the

general background and averaged for the signals from the two

corresponding spots per array. The resulting values of signal

intensity (INT) in counts per standardized area (mm2) were

related to the respective reference spots on the membrane. All

spots were detected. The CV of repeated measures was 6%.

COX4I1 transcript expression

Total RNA was isolated from muscle biopsies using the

RNeasy Mini Kit (Qiagen) and 600 ng was reverse transcribed

using the Omniscript RT Kit (Qiagen, Hombrechtikon,

Switzerland) using random hexamers (Qiagen,

Hombrechtikon, Switzerland). Subsequently, RT-qPCR was

performed on ~5 and 0.5 ng cDNA with specific primers to

detect the marker of aerobic capacity in vastus lateralis muscle,

i.e., level of mitochondrial gene transcript cytochrome c oxidase

subunit IV isoform 1 (COX4I1; forward, 5′-GCCATGTTCTTC

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

Frontiers in Physiology frontiersin.org05

Flück et al. 10.3389/fphys.2022.933792

http://imagej.nih.gov/ij
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.933792
martinf
Eingefügter Text
b

martinf
Durchstreichen

martinf
Eingefügter Text
2015b



ATCGGTTTC-3′; reverse, 5′-GGCCGTACACATAGTGCT
TCTG-3′), and 28S rRNA (forward, 5′-ATATCCGCAGCA
GGTCTCCAA-3′; reverse, 5′-GAGCCA
ATCCTTATCCCGAAG-3′) essentially as described

(Desplanches et al., 2014). Reactions were run in duplicate

using the KAPA SYBR FAST universal Kit (Labgene Scientific,

Châtel St. Denis, Switzerland) according to manufacturer’s

instructions. Relative transcript amounts were calculated using

the comparative CT method, taking the efficiency of

amplification for each template into account using the

comparative method for the threshold cycle for target

amplification as described (Schmutz et al., 2006). For each

sample, transcript signals were standardized to 28S rRNA.

Quantification of serum angiotensin
2 concentration

Angiotensin 2 levels were quantified with a validated

commercial angiotensin 2 enzyme-linked immunoabsorbent

assay (ELISA, SPIBio Bertin Pharma, Montigny le Bretonneux,

France) from blood being collected from the cubital vene before

and immediately after ramp exercise and processes essentially as

described (van Ginkel et al., 2015). In brief, the samples were

immediately processed by centrifugation at 4°C (3,000 g for

12 min) in the presence of inhibitor cocktail (comprising

O-Phenanthroline, Pepstatine A and ethylene-diamine-

tetraacetic acid and polyhexamethylene biguanide). The

supernatant plasma was concentrated via an C18 phenyl

cartridge before ELISA based measurements were conducted

vs. an internal standard.

Blood serum metabolites

30 μl of capillary blood was used to measure the main

metabolic substrates (glucose, triacylglycerol, total cholesterol,

low- and high-density lipoprotein, and/or total ketones) using a

portable whole blood test system (CardioCheck®, Polymer

Technology Systems; Indianapolis, IN, United States). Glucose

concentration was measured in the first minute after collection.

The serum concentration of low-density lipoprotein and very-

low-density lipoprotein cholesterol was calculated as described

(Rifai et al., 1992). The coefficient of variation for repeated

measurements was 2.6% for glucose and 3.9% for triglycerides,

respectively.

Statistics

Data were assembled and displayed as Box-Whisker plots

using MS-Excel (Microsoft Office Professional Plus 2016;

Kildare, Ireland) and exported into the Statistical Package for

the Social Sciences (SPSS version 23, IBM, Armonk,

United States). Analysis of variance (ANOVA) with post hoc

test for the least significant difference was used to assess

interaction effects of aerobic fitness [unfit, fit] x the ACE-I/D

genotype [I-allele, no I-allele] under the hypothesis of a

dominant effect of the insertion allele. Where applicable,

effects of exercise, and interactions with ACE-I/D genotype x

aerobic fitness were assessed with a repeated-measures ANOVA.

Effects of time [½, 8 h post exercise] and interactions with the

ACE-I/D genotype [I-allele (ACE-ID/II), no I-allele (ACE-DD)]

and factor identity [phosphorylation of 45 signaling proteins]

were assessed with a multivariate ANOVA.

Data for each parameter were assessed by a Kolmogorov-

Smirnov test and inferential statistics based on a Levene and/or

Mauchly test to verify whether the data meet the assumption of

normality and equality of variance, respectively. In case the

assumption was violated we subjected the data to the non-

parametric Kruskal–Wallis test, where applicable. Effects were

declared significant at p < 0.05. The strength of linear

relationships between phosphorylation levels and anatomical/

physiological parameters was analysed with a two-step

procedure. First, Pearson product-moment correlations were

carried out for the values from the repeated sample points,

30- and 480-min post exercise and average r- and p-values

calculated. Subsequently, linear relationships which met the

criteria of |r|>0.7 and p < 0.10 were singly verified for the

significance of repeated measures correlations (rrm) using an

online available algorithm under a threshold for significance of |

rrm|>0.7 and p < 0.05 (https://lmarusich.shinyapps.io/shiny_

rmcorr/; Marusich and Bakdash 2021). Average values are

given as mean ± standard deviation (SD), and where

applicable minima and maxima are given in brackets.

Results

Subject characteristics

Table 1 summarizes the average physiological characteristics

of the studied twenty-seven male subjects. Based on the

introduced threshold of 50 ml O2 min−1 kg−1, nine and

eighteen subjects qualified as aerobically fit or unfit,

respectively. The aerobically fit individuals performed on

average at least 6 h of physical activity per week at an

intensity that required an extra cardiovascular effort. On

average the aerobically fit subjects demonstrated superior

values for maximal oxygen uptake (+24%) and power output

(29%) during the two-legged cycling exercise to exhaustion

(Table 1). Maximal oxygen uptake (+15%) and power output

(19%) one-legged cycling exercise demonstrated trends for

higher values in the aerobically fit subjects. Three subjects of a

total of thirteen I-allele carriers, were identified as to represent

homozygous I-allele carriers.
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Metabolic characteristics of the
exhaustive one-legged exercise

At rest, after on overnight fast the respiration exchange ratio

was by a value of 0.14 higher in the fit compared to unfit subjects

(Table 2). Subjects exercised with the dominant leg up to an

imposed average intensity of 190 W during a ramp to exhaustion

that followed 25-min of exercise at a steady load of 30% of the 2-

legged Pmax. Such one-legged exercise increased the respiration

exchange ratio from average values of 0.81 ± 0.03 to 0.91 ± 0.01

(Table 1; Figure 1A). Glycogen concentration per muscle protein

in m. Vastus lateralis was reduced (in all subjects) by an average

of 0.046 mg mg−1 protein (Table 2; Figure 1A). Concomitantly

the blood concentration of glucose was increased by 0.74 mM,

while the levels of other metabolic factors were maintained

(Table 2).

Fitness-associated variability in metabolic
parameters

The concentration of neither of the assessed metabolic

parameters altered with one-legged exercise in association

with the fitness state (Table 2; Figure 1B). The fractional

changes for the respiration exchange ratio demonstrated a

trend (p = 0.074) for a higher increase in the unfit than fit

subjects.

Association of metabolic changes during
one-legged exercise to exhaustion with
the ACE-I/D genotype

Variability in exercise-induced alterations of blood glucose

concentration, was associated with the ACE-I/D genotype

(Table 2; Figure 2A). The effect resolved in an exaggerated

increase in the concentration of blood glucose in ACE-DD

genotypes (+26%) compared to I-allele carriers (7%)

immediately after one-legged exercise, which did not depend

on the fitness state (Figure 3A). Other metabolic parameters,

including glycogen depletion (Figure 2B), did not demonstrate

ACE-I/D genotype associated alterations with one-legged

exercise (Supplementary Figure S1), not further interactions

with the fitness state (Figure 3B; Table 2).

ACE-I/D genotype effects on muscle
signaling after exercise

For the aerobically fit subjects before ramp exercise,

angiotensin 2 concentration in blood serum was higher in

ACE-DD genotypes than in I-allele carriers (from 27.1 ±

4.1 vs. 9.3 ± 2.1 pg ml−1, p = 0.012). Angiotensin-2

concentration was increased immediately post-exercise (15.2 ±

4.1 to 36.3 ± 17.0 pg ml−1) and this did not differ between carriers

and non-carriers of the ACE I-allele (p = 0.316).
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TABLE 1 Physiological characteristics.

N Age Body
mass

Height BMI Pmax
2-leg

VO2max RER
rest

RER
max

Pmax VO2max

[years] [kg] [cm] [kg
m−2]

[Watt] [mL O2

min-1]
[Watt] [mL O2

min-1]

2-leg 2-leg 2-leg 2-leg 1-leg 1-leg

All 27 26.8 ± 5.7 77.9 ±
10.4

181.6 ± 6.8 23.6 ± 3.1 318.4 ±
57.7

4,142.4 ±
697.8

0.74 ±
0.05

1.08 ± 0.05 189.6 ±
43.6

3,438.2 ±
646.9

unfit 9 24.8 ± 5.1 74.8 ±
11.7

179.4 ± 7.5 23.3 ± 4.2 266.7 ±
33.9

3,563.8 ±
449.1

0.77 ±
0.06

1.10 ± 0.06 168.3 ±
24.9

3,128.3 ±
530.7

Fit 18 27.7 ± 5.9 79.3 ± 9.8 182.6 ± 5.9 23.8 ± 2.5 342.9 ±
50.9

4,416.4 ±
632.2

0.71 ±
0.08

1.07 ± 0.08 200.3 ±
47.5

3,593.1 ±
656.8

p fitness 0.291 0.479 0.322 0.907 0.002 0.003 0.078 0.375 0.098 0.082

ACE-DD 14 25.4 ± 5.2 75.8 ±
10.1

181.9 ± 7.9 22.9 ± 2.6 305.7 ±
55.8

4,126.5 ±
761.8

0.76 ±
0.07

1.09 ± 0.07 189.6 ±
40.8

3,423.8 ±
673.9

ACE-ID/II 13 28.6 ± 6.1 80.3 ±
10.8

181.5 ± 5.8 24.4 ± 3.6 328.5 ±
63.1

4,136.9 ±
797.8

0.72 ±
0.07

1.07 ± 0.07 187.3 ±
50.1

3,450.2 ±
695.9

p genotype 0.437 0.326 0.855 0.319 0.462 0.912 0.366 0.609 0.875 0.907

p genotype x
fitness

0.399 0.636 0.136 0.709 0.364 0.172 0.519 0.877 0.281 0.219

Mean ± SD for the anthropometric and physiological characteristics of the studied 27 subjects as assessed at rest, during one-legged cycling exercise in the morning after an over-night fast, and

two-legged cycling exercise on an ergometer. Bold underlined values indicate effects which were deemed significant at p < 0.05. ANOVA for the effects of the ACE I-allele (i.e., genotype) × aerobic

fitness (fitness) with post-hoc test of least significant difference.Q21
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TABLE 2 Metabolic characteristics.

n Glucose post Total
cholesterol

Low
density
lipoprotein

Triacylglycerol Ketones [mM] High
density
lipoprotein

Muscle
glycogen

RER [mM] post [mg
mg−1]

post pre max

[mM] [mM] [mM] [mM]

pre Pre Post Pre post pre post pre post pre pre

all 27 4.12 ±
0.62

4.86 ±
1.20

3.79 ± 0.57 3.93 ± 0.73 2.46 ± 0.52 2.47 ± 0.78 1.00 ±
0.62

0.90 ± 0.57 0.58 ± 0.26 0.53 ±
0.21

0.96 ±
0.31

1.16 ±
0.42

0.078 ±
0.052

0.032 ±
0.021

0.81 ±
0.16

0.91 ±
0.05

p exercise 0.016 0.546 0.982 0.362 0.160 0.126 <0.001 <0.001

unfit 9 4.11 ±
0.81

4.76 ±
1.23

3.49 ± 0.27 3.55 ± 0.33 2.34 ± 0.30 2.29 ± 0.27 1.00 ±
0.69

0.99 ± 0.75 0.55 ± 0.24 0.50 ±
0.15

0.95 ±
0.30

1.03 ±
0.30

0.091 ±
0.066

0.033 ±
0.012

0.72 ±
0.03

0.88 ±
0.03

fit 18 4.17 ±
0.51

4.86 ±
1.15

3.98 ± 0.68 4.18 ± 0.85 2.53 ± 0.64 2.60 ± 0.98 0.95 ±
0.51

0.85 ± 0.38 0.62 ± 0.25 0.57 ±
0.30

0.97 ±
0.30

1.22 ±
0.42

0.075 ±
0.042

0.033 ±
0.025

0.86 ±
0.17

0.93 ±
0.08

p
fitness
(pre)

0.867 0.039 0.599 0.969 0.901 0.457 0.452 0.025

p
genotype
(pre)

0.681 0.669 0.941 0.418 0.129 0.094 0.450 0.653

p fitness 0.452 0.003 0.260 0.556 a 0.901 0.418 a 0.472 0.006

p fitness x
exercise

0.576 0.678 0.627 0.381 0.370 0.457 0.489 0.130

ACE-DD 14 4.17 ±
0.79

5.27 ±
1.23

3.76 ± 0.67 3.89 ± 0.60 2.44 ± 0.64 2.43 ± 0.75 0.84 ±
0.41

0.83 ± 0.37 0.51 ± 0.30 0.46 ±
0.19

1.05 ±
0.41

1.18 ±
0.52

0.086 ±
0.060

0.033 ±
0.011

0.77 ±
0.11

0.88 ±
0.07

ACE-
ID/II

13 4.07 ±
0.50

4.30 ±
0.65

3.82 ± 0.54 3.96 ± 0.87 2.47 ± 0.47 2.50 ± 0.79 1.15 ±
0.72

0.96 ± 0.69 0.65 ± 0.18 0.59 ±
0.22

0.88 ±
0.18

1.14 ±
0.38

0.070 ±
0.043

0.031 ±
0.025

0.84 ±
0.14

0.93 ±
0.04

p
genotype

0.020 0.519 0.811 0.820 a 0.129 0.368 a 0.399 0.284

p
genotype
x exercise

0.060 0.911 0.741 0.765 0.610 0.758 0.565 0.804

p
genotype
x fitness

0.902 0.948 0.981 0.056 0.459 0.551 0.429 0.993

p
genotype
x fitness x
exercise

0.924 0.897 0.793 0.792 0.441 0.859 0.646 0.667

Mean ± SD for muscle glycogen and assessed metabolic characteristics in whole blood of the studied 27 subjects as assessed before and after exhaustive one-legged cycling exercise in the morning after an over-night fast. Bold underlined values indicate effects which

were deemed significant at p < 0.05. Repeated ANOVA for the effects of exercise x ACE I-allele (i.e., genotype) x aerobic fitness (fitness) with post-hoc test of least significant difference.
aKruskall Wallis Test.
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The phosphorylation level of 45 proteins involved in

intracellular signaling processes was quantified with a

phospho-kinase array (Figure 4). The phosphorylation levels

of assessed signaling factors demonstrated main effects of the

ACE-I/D genotype (p = 4.3 × 10–3) and factor identity (p = 4.0 ×

10–67) and both interacted (p = 2.3 × 10–4). Time (p = 0.212), the

interaction between time x factor identity (p = 0.993) did not

demonstrate an effect on phosphorylation levels. There was an

interaction between time × I-allele (p = 0.037). In carriers

compared to non-carriers of the I-allele, the overall levels of

protein phosphorylation were higher 0.5 h post exercise

(+0.0050 ± 0.0009 INT * mm2, p = 9.6 × 10–7), and this

trend continued 8 h post exercise (+0.0002 ± 0.0010 INT *

mm2, p = 0.075). For the ACE I-allele carriers, the overall

phosphorylation levels of assessed signaling factors were lower

8 h compared to 0.5 h post exercise (−0.0020 ± 0.0007 INT *

mm2, p = 0.002), when no difference existed between the two time

points for the non-carriers of the I-allele (p = 0.622). No

interaction existed between time x factor identity x ACE-I/D

genotype (p = 0.980).

Subsequently, phosphorylation levels were analysed

combined for the ½ and 8 h post exercise time points to
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FIGURE 1
Metabolic changes with one-legged exercise. Box-Whisker plots (box: first and third quartile, whisker minima and maxima, line: median, x:
mean, circles: non overlapping data points) for the fractional changes for blood metabolites and respiration exchange ratio immediately post one-
legged exercise, and muscle glycogen concentration 30 min post one-legged exercise combined (A) and split for aerobic fitness state (B). *, **,
***p < 0.05, <0.01, <0.005, respectively, for significant post vs. pre differences. ANOVA for the repeated factor of exercise and the factor of
aerobic fitness. N = 27.Q19

FIGURE 2
Exercise-induced alterations of glucose metabolism related compounds per genotype. Box-Whisker plots of the differences in the
concentration of blood glucose and muscle glycogen immediately and 30 min, respectively, after one-legged exercise in carriers (ACE-ID/II) and
non-carriers (ACE-DD) of the ACE I-allele. *, p < 0.05 for post vs. pre differences between genotypes. ANOVA for the factor ACE-I/D genotype.
N = 27.
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isolate signaling factors which variable phosphorylation levels

explained the interaction between ACE-I/D genotype and

factor identity. For the aerobically fit subjects, the

phosphorylation levels of glucose uptake-related kinases

[AKT-pT308 (+156%), SRC-pY419 (+39%), p38α-pT180/
T182 (+80%), HCK-pY411 (+42%)] were increased in

carriers compared to non-carriers of the I-allele (i.e., ACE-

II/ID vs. ACE-DD) between ½ to 8 h after exhaustive one-

legged exercise (Figures 5A–D, G). As well, the

phosphorylation of angiotensin 2/cytokine [(STAT5A-

pY694 (+53%), STAT5B-pY699 (+72%), and angiotensin

1–7 [EGFR-pY1086 (+33%)] signaling factors was increased

in ACE-II/ID vs. ACE-DD post exercise (Figures 5E–G).

Concomitantly, the AKT-S473 phosphorylation level was

selectively reduced in carriers compared to non-carriers of

the ACE I-allele (−54%; Figure 6). The phosphorylation of the

angiotensin 2-signaling-related PLC-γ1-pY783 was not

affected ½ and 8 h after exercise (p = 0.43 and 0.61).

Associations of muscle composition and
metabolites at rest with fitness x ACE-I/D
genotype

We assessed whether anatomy-related differences existed in

skeletal muscle before one-legged exercise would be associated

with the ACE I-allele and relate to metabolic efficiency. At rest,

variability in MCSA of type I muscle fibers and the transcript

level of the mitochondrial marker, COX4I1, inm. Vastus lateralis

was associated with aerobic fitness, but not the ACE-I/D

genotype (Table 3); both being higher in the aerobically fit

than unfit subjects. MCSA of type II muscle fibers was

associated with the ACE-I/D genotype, being larger in I-allele

carriers than non-carriers (i.e., ACE-ID/II vs. ACE-DD genotype,

Table 3).

Variability in muscle capillarisation, i.e., capillary density and

muscle-to-fiber ratio, and muscle glycogen concentration, before

the one-legged exercise, was not associated with the fitness states,

nor the interaction between the fitness state and ACE-I/D

genotype (Tables 2, 3). Aerobically fit subjects demonstrated a

14% higher blood concentration total cholesterol (Table 2).

Inter-relationships

96 largely significant correlations, meeting │r│>0.70 and p <
0.05, were identified between physiological parameters and the

estimated levels of ACE-I/D genotype-dependent protein

phosphorylation (Supplementary Table S1).

The phosphorylation level of AKT-S473 inm. Vastus lateralis

muscle post-exercise, i.e., AKT-pS473, demonstrated the highest

number of correlations with anatomical and metabolic

parameters of muscle performance, i.e., MCSA of type I and

type II muscle fibers, capillary-to-fiber ratio and fold changes in

RER, and the blood concentrations of glucose andHDLwith one-

legged exercise (Table 5). As well, EGFRY1086 phosphorylation

demonstrated correlations with exercise-induced fold changes in

the blood concentrations of glucose and HDL, and RER.

The phosphorylation level of further signaling proteins

correlated to physiological parameters pre- or post-exercise

and fold changes in the blood concentration of lipid

metabolism-related compounds (Supplementary Table S1).

None of the assessed parameters was correlated with the

concentration changes of muscle glycogen.

Discussion

The provision and aerobic combustion of organic substrates,

notably glucose, is a critical metabolic factor for the fueling of
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FIGURE 3
Exercise-induced alterations of glucosemetabolism related compounds per genotype and fitness state. Box-Whisker plots of the differences in
the concentration of blood glucose and muscle glycogen immediately and ½ hour, respectively, after one-legged exercise in association with the
ACE I-allele (i.e., genotype) and fitness state. †, ††, †††p < 0.05, <0.01 < 0.001 for exercise-induced changes. *, p < 0.05 for differences between
genotypes. Repeated measures ANOVA for the factor ACE-I/D genotype x exercise. N = 27.Q20
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muscle contraction during intense forms of physical work for

prolonged duration (Romijn et al., 1993; van Loon et al., 2001).

Here we assessed the contribution of a frequent variation in the

gene for a major regulator of capillary perfusion, i.e., the

insertion/deletion gene polymorphism of angiotensin-

converting enzyme to the observable variability in glucose

metabolism-related parameters with one-legged type of cycling

exercise to exhaustion, whether this would interact with the state

of aerobic fitness, and whether this would be related to ACE-I/D

genotype-associated differences in the phosphorylation of

signaling factors that regulate glucose uptake in skeletal

muscle fibers. We identified that the alteration of blood

glucose concentration with exercise varies with the ACE-I/D

genotype but is uncoupled from aerobic fitness. Conversely,

variability in the muscle store of glucose, i.e., glycogen, with

and without exercise was not associated with the interaction

between the ACE-I-allele and fitness state. Notably, exercise-

induced changes in indices of transcapillary uptake and

combustion of glucose, and one lipid compound, in the

exercised m. Vastus lateralis (i.e., concentration of blood
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Quantification of protein phosphorylation. (A) Sketch of the assessed phosphorylation of signaling proteins being involved in GLUT-4mediated
glucose import as induced by contraction and insulin, angiotensin and cytokine signaling. Abbreviation: AT1, angiotensin receptor 1; CHO, glucose.
(B–E) Images depicting the detection of the phosphorylation content for vastus lateralis muscle samples from an ACE-DD (B,C) and ACE-II (D,E)
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glucose, RER, and capillary-to-fiber ratio, HDL) stood in a linear

relationship with the phosphorylation level of AKT-S473 in

exercised vastus that showed ACE-I/D associated differences

in phosphorylation. Conversely, the blood concentration of

the lipid-related compound, total cholesterol, demonstrated an

exercise and aerobic fitness-associated variability, which was

independent of the ACE-I/D genotype (Table 2). Notably,

these effects were observed in the absence of any significant

ACE-I/D-related differences in capillarisation. Collectively the

findings implicate an important role of ACE-I/D associated

signaling processes for variability in capillary-mediated

glucose import into muscle fibers during exhaustive muscle

work and implicate that this is related to acute, inter-

individual differences in angiotensin-related AKT signaling
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FIGURE 5
Phosphotransferases demonstrating ACE-I/D genotype differences post exercise. Box-Whisker plots of the (referenced) values for the
phosphorylation of glucose metabolism related phosphotransferases in the fit carriers (ACE-ID/II) and non-carriers of the ACE I-allele (ACE-DD) as
average of values½ and 8 h after one-legged exercise. (A) AKT-pT308, (B) p38α-pT180/Y182, (C) SRC-pY419, (D)HCK-pY411, (E) STAT5A-pY694, (F)
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post-exercise (Powers et al., 2018), which may be independent of

capillary blood supply per se.

In respect to ACE-I/D genotype associated variability in

exercise-induced alterations in blood glucose concentration,

the inverse genotype dependence of T308 and

S473 phosphorylation of AKT in m. Vastus lateralis post-

exercise is intriguing. Only angiotensin 1–7 is known to

increase the phosphorylation of both sites on AKT, while

angiotensin 2 may decrease AKT phosphorylation in skeletal

muscle (Morales et al., 2016; Powers et al., 2018). Our

observation that only T308 phosphorylation of AKT was

lower in ACE-DD genotypes with a higher blood

concentration of angiotensin 2 prior to exercise, but when

S473 phosphorylation was higher, calls for importance of

considering the ACE-I/D genotype distribution, blood

concentrations of angiotensin 2, and the specific occupancy of

phosphorylation sites on AKT to render interpretations of

exercise-induced AKT signaling in skeletal muscle meaningful

for each individual.

The overshoot of blood glucose concentration with

exhaustive exercise in the fasted state for ACE-DD genotypes

in the studied white Caucasian men compares to the elevated

susceptibility of the homologous genotype in populations from

Northern China to demonstrate substantially elevated fasting

blood glucose concentrations in the absence of exercise (Feng

et al., 2002). This metabolic peculiarity reflects the incapacity of

the body to control blood glucose concentration. It is typically

due to peripheral insulin resistance associated with chronic

physical inactivity World Health Organization, 2011;

Surapongchai et al., 2018). Intriguingly, however, the ACE-I/

D genotype-associated effect of exercise on blood glucose

concentration in the current investigation did not depend on

aerobic fitness which is normally thought to improve glucose

handling (p = 0.945; Table 2; Supplementary Figure S1;

reviewed in Álvarez et al. (2017). However, in the in-here

studied population of healthy subjects, the ACE-DD

genotype associated overshoot of blood glucose

concentration depended on prior exercise to exhaustion.

Interestingly, the blood concentration of glucose is variably

affected by different moderate intense training interventions

(Álvarez et al., 2017). This seeming disconnection could be

related due to the relatively small sample size of the study.

Alternatively, it may reflect that the capacity for insulin- and

contraction-induced glucose handling is set by the overall

surface area of the endothelium as represented by the

capillarisation of peripheral tissues, and especially skeletal

muscle (Hedman et al., 2001).
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FIGURE 6
Phosphotransferase demonstrating ACE-I/D genotype
related ‘counter-regulation’ post exercise. Box-Whisker plots of
the (referenced) values for the phosphorylation of glucose
metabolism related AKT-pS473 in the fit carriers (ACE-ID/II)
and non-carriers of the ACE I-allele (ACE-DD) ½ - 8 h after one-
legged exercise. The unit for the Y-axes is given together with the
phospho-protein identity in the heading. ***, p < 0.001 for
differences vs. ACE-DD genotype. ANOVA for the factor ACE-I/D
genotype.

TABLE 3 Muscle characteristics.

n MCSA type I MCSA type II Type I area Capillary density capillary- to-fiber ratio COX4I1

[μ m2] [μm2] [%] [mm−2] [/28S rRNA]

all 27 5,598.3 ± 2023.9 6,935.6 ± 2,713.9 36.6 ± 10.4 290.3 ± 41.6 2.22 ± 0.62 11.6 ± 16.1

unfit 9 4,424.6 ± 916.5 5,709.7 ± 1800.9 34.5 ± 11.1 283.7 ± 46.5 1.95 ± 0.54 5.2 ± 4.2

fit 18 6,451.9 ± 2,126.4 7,827.1 ± 2,926.6 38.2 ± 9.8 293.4 ± 39.9 2.34 ± 0.64 16.8 ± 21.2

p fitness 0.006 0.086 0.039 0.945 0.305 0.023

ACE-DD 4,863.0 ± 1,303.6 5,704.7 ± 1891.0 38.0 ± 7.1 281.4 ± 40.0 1.99 ± 0.49 10.0 ± 19.1

ACE-ID/II 6,415.4 ± 2,310.1 8,303.2 ± 2,629.9 35.2 ± 14.1 299.1 ± 42.2 2.44 ± 0.65 13.8 ± 11.5

p genotype 0.079 0.019 0.340 0.121 0.094 0.094

fitness x genotype 0.125 0.463 0.402 0.109 0.642 0.374

Mean ± SD for selected characteristics of the studied 27 subjects in vastus lateralis muscle before one-legged exercise and glycogen concentration with exercise. Bold underlined values

indicate effects which were deemed significant at p < 0.05. ANOVA for the effects of ACE I-allele (i.e., genotype) x aerobic fitness (fitness) with post-hoc test of least significant difference.

n MCSA type I MCSA type II type I area capillary density capillary- to-fiber ratio COX4I1

[μm2] [μm2] [%] [mm-2] [/28S rRNA]
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Skeletal muscle tissue is the largest contributor to glucose

homeostasis, especially during times of elevated physical activity,

which increases glucose uptake to skeletal muscle via a

vasodilatory effect that counteracts angiotensin 2-mediated

vasoconstriction being independent of insulin (Korthuis 2011;

Richter and Hargreaves, 2013). Interestingly, we identified ACE-

I/D genotype associated differences in the phosphorylation of

certain regulatory amino acids for key signaling proteins involved

in the import of blood-borne glucose into skeletal muscle via the

post-translational regulation of the facilitative GLUT-4

transporter (i.e., AKT, SRC, HCK, STAT5A and STAT5B,

p38α, and EGFR; Figure 4; du Toit and Donner, 2012; Van

Epps-Fung et al., 1997, Bengal et al., 2020). Notably, the

phosphorylation level for certain of the former signaling

molecules (i.e., AKT-pS473, EGFR-pY1086) in exercised

muscle post-exercise stood in a considerable linear

relationship with the fold changes in blood glucose

concentration after one-legged exercise (Table 5,

Supplementary Table S1). Our findings are of interest given

that they mirror the reported the improvement in glucose

handling in skeletal muscle with pharmacological ACE

inhibition by NO-dependent effect of bradykinin and/or

antagonism of angiotensin action on skeletal muscle which

may include elevated GLUT-4 protein expression (Henriksen

and Jacob 2003; Stanford and Goodear, 2014). Consequently, the

identified ACE-I/D genotype-dependent phosphorylation levels

of signaling proteins imply that dysregulation of glucose

handling by genetic ACE inhibition (via the I-allele) is

associated with shifts in the activation of an array of coupled

phosphotransfer enzymes.

Especially, the reciprocal ACE I-allele associated levels of

S473 and T308 phosphorylation of insulin-receptor-associated

protein kinase B (AKT) is of interest (compare Figure 5A vs.

Figure 6A), because these amino acids are separately

phosphorylated by 3-phosphoinositide-dependent protein

kinase 1 and 2 (Shiojima and Walsh, 2002); thus indicating a

possibly angiotensin-dependent involvement of both upstream

kinases in AKT phosphorylation post exercise. Full activation of

AKT requires phosphorylation of T308 and S473 (Alessi et al.,

1996). S473 but not T308 phosphorylation of AKT is typically

increased upon insulin stimulation and exercise (Treebak et al.,

2014; Cartee 2015). Intriguingly, the dephosphorylation of

T308 on AKT coincides with the inactivation of the serine/

threonine activity of the AKT enzyme (Trotman et al., 2006).

In this respect the observed linear relationship between the

phosphorylation level of AKT-S473 (r = −0.952, p = 0.035),

but not T308 (r = 0.348, p = 0.618) phosphorylation in m. Vastus

lateralis, with the fold changes in RER is of interest as this

parameter corresponds to the utilization of substrates during

exercise.

Similarly, the correlation between the phosphorylation level

of AKT-S473 and capillary-to-fiber ratio in m. Vastus lateralis is

intriguing because the latter reflects of the capacity for insulin-

mediated glucose uptake in skeletal muscle (Hedman et al.,

2001). AKT-S473 phosphorylation is known with angiogenesis

(Shiojima and Walsh 2002) and high angiotensin 2 levels are

associated with exercise-induced skeletal muscle angiogenesis in

laboratory models (reviewed in Rodrigues et al., 2022). As well,

we observed a trend for a negative correlation between the

phosphorylation of AKT-S473 and COX4I1 transcript levels in

m. Vastus lateralis (Table 5) which relate to the recently reported

association between AKT-S473 expression and phosphorylation

and the protein expression of cytochrome C oxidative subunits in

mouse skeletal muscle (Jaiswal et al., 2022). Collectively, our

findings point to AKT-S473 phosphorylation as possible

gatekeeper of ACE I/D genotype-related differences in the

import and combustion of blood-borne substrates in

exhaustively exercised skeletal muscle.

The extent to which the former mentioned other signaling

factors relate to the detriment of homozygous ACE D-allele

carriers in glucose handling during exercise remains to be

explored. Possibly this relates to effects on the acute

regulation of capillary perfusion via a vasoconstrictive

mechanism (van Ginkel et al., 2015) or is reflective of a

reduced capacity for perfusion, as indicated by a near trend

for an overall reduced muscle capillary-to-fiber ratio (p = 0.094).

Regarding the former mechanisms, it is of note that ACE activity

and the blood concentration of angiotensin 2 are increased in

ACE-DD genotypes compared to ACE I-allele carriers

(Valdivieso et al., 2017). Correspondingly, we identified ACE-

I/D genotype related differences in the phosphorylation of

STAT5a-Y694 and STAT5b-Y699 post exercise (Figure 4,

Forrester et al., 2018; Haddad et al., 2005; Satou and

Gonzalez-Villalobos 2012). Intriguingly, the studied

phosphorylation of other proteins being implicated in

angiotensin or cytokine signaling in myogenic cells,

i.e., STAT2-pY689, STAT6-pY641, FYN-pY420, AMPKα2-
pT172, or smooth muscle cells (i.e., PLC-γ1-pY783, Jiang

et al., 2017), was not affected in an ACE-I/D genotype

dependent manner after one-legged exercise cells (Table 4).

Little is known about signaling downstream of angiotensin

receptors AT1 or AT2 receptors in skeletal muscle cells,

except for the generic phosphorylation of AMPK post-exercise

(Surapongchai et al., 2018), and to which degree the observed

regulation may reflect constriction of feeder arteries/arterioles

that could affect muscle perfusion, or relate to angiogenic and

myogenic processes being modified by angiotensin 2 and its

related peptide angiotensin 1–7 during exercise (Fernandes et al.,

2011; Evangelista 2020).

Limitations

Some factors may be considered when valuing the

interpretation of our data. For instance, the relatively low

number of investigated subjects may be considered to
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TABLE 4 Exercise-induced alterations of the muscle kinome in dependence of the ACE-I/D genotype.

phospho-protein time [min] ACE-DD ACE-ID/II ID/DD vs II ALL

Mean ± SD Mean ± SD p-value (30 or 480) p-value (30&480) Mean ± SD

AKT-pS473 30 6.72 ± 0.31 2.41 ± 1.01 <0.001 <0.001 3.27 ± 2.12

480 6.29 ± 0.29 4.14 ± 1.99 0.002 4.86 ± 1.87

p-value (480 vs 30) 0.581 <0.001 0.153

AKT-pT308 30 0.61 ± 0.23 1.29 ± 0.57 0.099 0.048 1.16 ± 0.58

480 0.35 ± 0.13 1.12 ± 0.61 0.235 0.66 ± 0.67

p-value (480 vs 30) 0.158 0.311 0.418

AMPKα1-pT183 30 1.24 ± 0.08 1.60 ± 0.16 0.563 0.503 1.52 ± 0.21

480 1.36 ± 0.09 1.62 ± 0.75 0.704 1.53 ± 0.55

p-value (480 vs 30) 0.876 0.965 0.876

AMPKα2-pT172 30 3.58 ± 0.77 3.78 ± 0.48 0.742 0.409 3.74 ± 0.43

480 4.85 ± 1.04 3.90 ± 1.18 0.157 4.21 ± 1.00

p-value (480 vs 30) 0.102 0.805 0.128 0.43

CHK2-pT68 30 2.47 ± 0.14 3.02 ± 0.16 0.375 0.557 2.91 ± 0.28

480 2.67 ± 0.15 2.38 ± 0.40 0.667 2.48 ± 0.33

p-value (480 vs 30) 0.797 0.183 0.633

c-JUN-pS63 30 0.80 ± 0.32 1.03 ± 0.28 0.704 0.557 0.99 ± 0.26

480 0.44 ± 0.18 0.75 ± 0.48 0.653 0.65 ± 0.38

p-value (480 vs 30) 0.647 0.548 0.482

CREB-pS133 30 1.68 ± 0.23 2.01 ± 0.14 0.589 0.697 1.94 ± 0.19

480 2.04 ± 0.28 2.06 ± 0.71 0.973 2.06 ± 0.51

p-value (480 vs 30) 0.639 0.907 0.645

EGFR-pY1086 30 3.56 ± 0.42 4.55 ± 0.39 0.110 0.028 4.35 ± 0.55

480 3.02 ± 0.35 4.05 ± 0.68 0.128 3.70 ± 0.76

p-value (480 vs 30) 0.486 0.293 0.253

eNOS-pS1177 30 0.41 ± 0.16 0.52 ± 0.20 0.868 0.786 0.50 ± 0.18

480 0.24 ± 0.09 0.38 ± 0.21 0.829 0.33 ± 0.17

p-value (480 vs 30) 0.820 0.779 0.733

ERK1/2-pT202/Y204 30 2.35 ± 0.26 2.91 ± 0.32 0.366 0.364 2.80 ± 0.37

&T185/Y187 480 2.01 ± 0.22 2.28 ± 0.49 0.685 2.19 ± 0.38

p-value (480 vs 30) 0.659 0.190 0.288

FAK-pY397 30 1.10 ± 0.04 1.57 ± 0.21 0.449 0.503 1.48 ± 0.28

480 1.16 ± 0.04 1.31 ± 0.25 0.830 1.26 ± 0.20

p-value (480 vs 30) 0.939 0.584 0.826

FGR-pY412 30 0.76 ± 0.09 1.61 ± 0.52 0.167 0.172 1.44 ± 0.59

480 0.64 ± 0.08 1.04 ± 0.34 0.556 0.91 ± 0.33

p-value (480 vs 30) 0.881 0.231 0.451

FYN-pY420 30 1.97 ± 0.14 3.01 ± 0.53 0.094 0.159 2.80 ± 0.65

480 2.19 ± 0.16 2.44 ± 0.48 0.705 2.36 ± 0.37

p-value (480 vs 30) 0.781 0.239 0.704

GSK3α/β-pS21/S9 30 2.39 ± 0.22 3.15 ± 0.67 0.216 0.073 3.00 ± 0.67

480 2.10 ± 0.19 2.98 ± 1.05 0.192 2.69 ± 0.90

p-value (480 vs 30) 0.711 0.721 0.616

HCK- pY411 30 3.56 ± 0.62 6.09 ± 1.11 <0.001 0.001 5.58 ± 1.49

480 4.56 ± 0.80 5.11 ± 0.99 0.411 4.93 ± 0.77

p-value (480 vs 30) 0.199 0.043 0.973

HSP27-pS78/S82 30 3.23 ± 1.07 3.00 ± 0.41 0.710 0.973 3.05 ± 0.37

480 2.01 ± 0.66 2.27 ± 0.59 0.701 2.18 ± 0.44

(Continued on following page)
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TABLE 4 (Continued) Exercise-induced alterations of the muscle kinome in dependence of the ACE-I/D genotype.

phospho-protein time [min] ACE-DD ACE-ID/II ID/DD vs II ALL

Mean ± SD Mean ± SD p-value (30 or 480) p-value (30&480) Mean ± SD

p-value (480 vs 30) 0.118 0.124 0.033

HSP60 30 0.49 ± 0.29 0.33 ± 0.20 0.797 0.284 0.36 ± 0.18

480 1.19 ± 0.70 0.37 ± 0.05 0.224 0.64 ± 0.48

p-value (480 vs 30) 0.370 0.939 0.421

JNK-1/2/3 30 1.61 ± 0.05 2.14 ± 0.40 0.390 0.275 2.04 ± 0.42

-pT183/Y185, T221/Y223 480 1.54 ± 0.05 2.01 ± 0.64 0.488 1.85 ± 0.53

p-value (480 vs 30) 0.923 0.775 0.817

LCK-pY394 30 1.27 ± 0.01 1.68 ± 0.27 0.501 0.661 1.60 ± 0.30

480 1.25 ± 0.01 1.23 ± 0.45 0.983 1.24 ± 0.32

p-value (480 vs 30) 0.982 0.349 0.611

LYN-pY397 30 1.99 ± 0.35 2.80 ± 0.20 0.185 0.423 2.64 ± 0.40

480 2.55 ± 0.45 2.47 ± 0.31 0.899 2.50 ± 0.23

p-value (480 vs 30) 0.467 0.481 0.800

MSK1/2-pS376/S360 30 3.64 ± 0.37 3.79 ± 0.24 0.807 0.457 3.76 ± 0.21

480 3.15 ± 0.32 3.68 ± 1.14 0.433 3.50 ± 0.86

p-value (480 vs 30) 0.528 0.814 0.509

p27-pT198 30 0.25 ± 0.14 0.31 ± 0.15 0.929 0.852 0.30 ± 0.13

480 0.11 ± 0.06 0.22 ± 0.20 0.864 0.19 ± 0.16

p-value (480 vs 30) 0.854 0.863 0.805

p38α-pT180/Y182 30 1.41 ± 0.09 2.36 ± 0.63 0.123 0.015 2.17 ± 0.69

480 1.29 ± 0.08 2.58 ± 1.27 0.057 2.15 ± 1.17

p-value (480 vs 30) 0.882 0.644 0.909

p53-pS15 30 0.36 ± 0.06 0.91 ± 0.41 0.371 0.310 0.80 ± 0.44

480 0.29 ± 0.05 0.66 ± 0.58 0.576 0.54 ± 0.46

p-value (480 vs 30) 0.926 0.606 0.728

p53-pS392 30 0.26 ± 0.12 0.53 ± 0.20 0.666 0.650 0.47 ± 0.21

480 0.13 ± 0.06 0.28 ± 0.34 0.826 0.23 ± 0.25

p-value (480 vs 30) 0.865 0.601 0.676

p53-pS46 30 0.77 ± 0.17 1.24 ± 0.37 0.449 0.395 1.14 ± 0.38

480 0.56 ± 0.12 0.87 ± 0.50 0.644 0.77 ± 0.39

p-value (480 vs 30) 0.788 0.446 0.531

p70S6K-pT389 30 0.36 ± 0.27 0.47 ± 0.25 0.853 0.708 0.45 ± 0.22

480 0.11 ± 0.08 0.33 ± 0.33 0.736 0.26 ± 0.27

p-value (480 vs 30) 0.747 0.773 0.670

p70S6K-pT421/S424 30 0.72 ± 0.22 1.15 ± 0.43 0.483 0.294 1.06 ± 0.42

480 0.46 ± 0.14 0.99 ± 0.72 0.434 0.81 ± 0.59

p-value (480 vs 30) 0.738 0.731 0.643

PDGF-Rβ-pY751 30 0.82 ± 0.18 1.31 ± 0.32 0.426 0.542 1.21 ± 0.35

480 1.11 ± 0.24 1.17 ± 0.65 0.921 1.15 ± 0.46

p-value (480 vs 30) 0.707 0.783 0.859

PLC-γ1-pY783 30 0.46 ± 0.12 0.95 ± 0.43 0.431 0.370 0.85 ± 0.43

480 0.31 ± 0.08 0.65 ± 0.53 0.620 0.54 ± 0.42

p-value (480 vs 30) 0.849 0.532 0.625

PRAS40-pT246 30 1.58 ± 0.41 2.81 ± 0.76 0.046 0.264 2.57 ± 0.86

480 2.30 ± 0.60 2.08 ± 0.61 0.751 2.15 ± 0.45

p-value (480 vs 30) 0.357 0.127 0.989

PYK2-pY402 30 0.35 ± 0.13 0.75 ± 0.27 0.515 0.423 0.67 ± 0.29

480 0.20 ± 0.08 0.53 ± 0.43 0.624 0.42 ± 0.36

(Continued on following page)
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represent a limitation for the statistical power not allowing to

unfold all the hypothesized differences between the individual

ACE-I/D genotypes, such as glycogen depletion (Valdivieso et al.,

2017) notably as only three subjects represented homozygous

I-allele carriers (i.e., ACE-II). The deployed single cut-off of a

50 ml O2 min−1 kg−1 for VO2max, to declare the studied subjects
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TABLE 4 (Continued) Exercise-induced alterations of the muscle kinome in dependence of the ACE-I/D genotype.

phospho-protein time [min] ACE-DD ACE-ID/II ID/DD vs II ALL

Mean ± SD Mean ± SD p-value (30 or 480) p-value (30&480) Mean ± SD

p-value (480 vs 30) 0.851 0.650 0.691

RSK1/2/3-pS380/S386/S377 30 0.94 ± 0.42 0.92 ± 0.31 0.965 0.771 0.92 ± 0.27

480 0.49 ± 0.22 0.78 ± 0.34 0.664 0.69 ± 0.29

p-value (480 vs 30) 0.562 0.781 0.522

SRC-pY419 30 2.75 ± 0.26 3.69 ± 0.45 0.127 0.043 3.50 ± 0.57

480 2.40 ± 0.23 3.32 ± 0.36 0.174 3.01 ± 0.59

p-value (480 vs 30) 0.656 0.436 0.431

STAT2-pY689 30 3.08 ± 0.73 3.86 ± 0.71 0.074 0.796 3.71 ± 0.71

480 4.67 ± 1.10 3.72 ± 0.98 0.048 4.03 ± 0.90

p-value (480 vs 30) 0.004 0.663 0.027

STAT3-pS727 30 0.19 ± 0.16 0.40 ± 0.19 0.735 0.698 0.36 ± 0.19

480 0.05 ± 0.04 0.20 ± 0.30 0.828 0.15 ± 0.23

p-value (480 vs 30) 0.855 0.669 0.705

STAT3-pY705 30 0.32 ± 0.11 0.71 ± 0.31 0.522 0.429 0.63 ± 0.32

480 0.19 ± 0.07 0.52 ± 0.53 0.626 0.41 ± 0.42

p-value (480 vs 30) 0.872 0.689 0.729

STAT5A-pY694 30 1.86 ± 0.27 3.26 ± 0.79 0.025 0.022 2.98 ± 0.92

480 2.30 ± 0.34 3.00 ± 0.94 0.295 2.77 ± 0.78

p-value (480 vs 30) 0.579 0.595 0.845

STAT5A/B-pY694/Y699 30 0.88 ± 0.27 1.77 ± 0.42 0.150 0.209 1.59 ± 0.54

480 1.37 ± 0.42 1.63 ± 0.31 0.700 1.55 ± 0.26

p-value (480 vs 30) 0.529 0.770 0.701

STAT5B-pY699 30 1.33 ± 0.29 2.76 ± 0.75 0.022 0.017 2.47 ± 0.91

480 1.81 ± 0.39 2.59 ± 1.35 0.249 2.33 ± 1.06

p-value (480 vs 30) 0.542 0.723 0.737

STAT6-pY641 30 1.78 ± 0.50 2.94 ± 0.63 0.062 0.305 2.71 ± 0.75

480 2.67 ± 0.75 2.46 ± 1.20 0.749 2.53 ± 0.86

p-value (480 vs 30) 0.254 0.314 0.654

TOR-pS2448 30 2.75 ± 0.20 3.13 ± 0.05 0.538 0.339 3.05 ± 0.17

480 2.48 ± 0.18 2.97 ± 0.62 0.463 2.81 ± 0.52

p-value (480 vs 30) 0.732 0.750 0.646

WNK1-pT60 30 0.75 ± 0.07 0.56 ± 0.16 0.758 0.622 0.60 ± 0.16

480 0.85 ± 0.08 0.59 ± 0.02 0.699 0.68 ± 0.15

p-value (480 vs 30) 0.896 0.948 0.884

YES-pY426 30 1.94 ± 0.19 2.8 ± 0.25 0.166 0.343 2.62 ± 0.44

480 2.22 ± 0.22 2.23 ± 0.49 0.986 2.23 ± 0.35

p-value (480 vs 30) 0.713 0.24 0.766

β-Catenin 30 1.03 ± 0.06 1.28 ± 0.25 0.687 0.531 1.23 ± 0.24

480 0.95 ± 0.06 1.27 ± 0.41 0.631 1.16 ± 0.34

p-value (480 vs 30) 0.912 0.983 0.916

Mean ± SD for the reference related values of assessed 45 phospho-proteins (as related to the signals of the reference spots × 100), and the respective p-values for the post/hoc effects of time and

ACE I-allele (i.e., genotype). Bold underlined values indicate effects which were deemed significant at p < 0.05. Phospho-proteins in bold demonstrated genotype effects. ANOVA with post/hoc

test of least significant difference.
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as aerobically fit may also introduce a certain fuzziness in the

statistical sizes. However, the thereby declared fit subjects all

performed at least 6 h of physical activity per week at an intensity

that required an extra cardiovascular effort, and demonstrated

elevated muscle levels of mitochondrial marker, the

COX4I1 transcript (Desplanches et al., 2014), compared to the

unfit subjects. These findings support the reasonability to allocate

subjects to groups of aerobically fit and unfit individuals based on

the selected VO2max-based criteria. As well, the induced systemic

metabolic effects during one-legged cycling exercise (i.e., RER and

VO2 and concentrations of blood metabolites) may be interpreted

respective to the typical test situation of a two-legged cycling test to

exhaustion that is typically deployed to challenge whole-body

metabolism. One may also consider that certain metabolic

factors during one-legged exercise may be specifically affected

since exercise was carried out in the fasted state when ketone

concentration in blood was slightly above the norm value for a fed

state (i.e., 0.59 vs. 0.50 mM; Burstal et al., 2018). In this respect, we

identified that RER at rest was higher in the fit than unfit subjects

before the one-legged exercise when we noted an inverse trend

before the two-legged exercise test (compare Tables 1, 2). We

choose one-legged exercise as a stimulus to assess the influence of

the ACE-I/D genotype, to exclude effects of a limitation of cardiac

output, which is associated with the ACE-I/D genotype as well

(Hernández et al., 2003; Puthucheary et al., 2011). Nevertheless, the

observed depletion of muscle glycogen concentration witnessed the

exhaustive nature of the stimulus at the local, muscle level. We also

indicate that we did assess the phosphorylation of signaling factors

only in samples being collected at two time points post-exercise and

did not localize the cell type expressing the studied proteins in

which phosphorylation was affected. This was motivated by the fact

that the selected sample points are known to reflect active signaling

in exercised muscle (Camera et al., 2010; Moberg et al., 2020), and

as sufficient sample was only available for these time points.

In order to account for random influences on

phosphoprotein levels in the last biopsy 8 h after exercise in

the fasted state, care was taken to avoid additional physical

activity and provide the subjects with a meal. We can confirm

that all subjects exercised in the fasted state based on elevated

ketone levels and consumed the provided sandwiches after

exercise. However, we cannot exclude a possible interference

of dietary factors to the observed variability in phosphoprotein

levels 8 h post exercise, because the effective caloric intake after

exercise was not standardized. The absence of main effects of

time on protein phosphorylation, whereas strong, interacting,

effects were identified for the ACE-I/D genotype and factor

identity, indicate that influences of one-legged exercise on

phosphorylation of the studied signaling factors in vastus

lateralis muscle were comparably equal between 0.5 and 8 h

post exercise. Interestingly, ACE I-allele associated differences

were observed between the two time points, indicating a selective

fall in overall phosphorylation levels of studied signaling proteins

between 8 and ½ h post exercise in ACE I-allele carriers. The

extent to which this relates to the specific stimulus of exhaustive

one-legged exercise in the fasted state with a subsequent period of

rest under unsolicited food intake remains to be explored. Finally,

the identified significant relationships of post exercise

phosphorylation levels of ACE I-allele associated glucose

signaling proteins with structural and metabolic hallmarks of

exercise performance support the relevance of our sample design

and point out novel candidates for angiotensin signaling in

skeletal muscle.

Perspectives

Future investigations may explore to which extent

angiotensin target pharmacological and physiological

interventions are effective in promoting local

improvements in aerobic glucose metabolism by enhancing

trans-capillary glucose uptake and mitigating inactivity-

related type II diabetes (Henriksen and Jacob 2003). These

attempts may also explore whether regular exercise or fitness

in subject populations, i.e., ACE-DD genotypes, that are at

risk of developing this affection (Thomas et al., 2006; Smith

et al., 2016; Surapongchai et al., 2018) improves glucose

handling.

Conclusion

Aerobically fit subjects carrying the ACE insertion allele

demonstrate an enhanced capacity for post-translational

regulation of glucose uptake and angiotensin-mediated
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TABLE 5 Linear relationship between the phosphorylation of signaling
proteins and parameters of glucose metabolism.

rrm-value p-value

AKT-pS473 Glucose_fold 0.872 0.024

AKT-pS473 RER_fold_1leg −0.970 0.001

AKT-pS473 HDL_fold 0.921 0.009

AKT-pS473 capillary_to_fiber_ratio −0.701 0.080

AKT-pS473 MCSA type I muscle fiber −0.945 0.004

AKT-pS473 MCSA type II muscle fiber −0.952 0.003

AKT-pS473 COX4I1 −0.765 0.076

EGFRY-p1086 Glucose_fold −0.896 0.016

EGFRY-p1086 HDL_fold −0.831 0.040

EGFRY-p1086 RER_fold1leg 0.740 0.092

EGFRY-p1086 body mass −0.850 0.016

STAT5A-pY694 body mass −0.793 0.033

R-value for repeated measures correlations between the phosphorylation level of

assessed phospho-proteins ½ and 8 h after one legged-exercise and anatomical sizes,

and fold changes in parameters of glucose metabolism. Repeated measures correlations

passing a threshold of p < 0.10 and |rrm|>0.70.
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vasoconstriction paralleling and correlating with indexes of

contraction-induced alterations of glucose handling such as

the blood concentration of glucose, respiration exchange

ratio, capillary-to-fiber ratio, and muscle glycogen content.

An overshoot in the blood concentration of glucose after

exhaustive exercise was evident in homozygous ACE D-allele

carries but was not affected by the state of aerobic fitness, and

physical activity, indicating that an ACE-I/D genotype-

related angiogenic mechanism, but not the aerobic fitness

state, explain the observed differences in glucose handling in

the cardiovasculature and skeletal muscle during exhaustive

one-legged exercise.
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