

${\tt HumanTech}$

Technology for Human Wellbeing Institute

Réalité virtuelle et augmentée: comment enrichir son cours avec l'apprentissage immersif?

Jean-Michel Vasse, HEdS-FR Elena Mugellini, HEIA-FR Quentin Meteier, HEIA-FR

16.05.2023

Hes.soo Haute Ecole Spécialisée de Suisse occidentale Fachhochschule Westschweiz ersity of Applied Sciences and Arts

UNIVERSITÉ DE FRIBOURG UNIVERSITÄT FREIBURG

PRESENTATION OF SPEAKERS

Jean-Michel Vasse

Lecturer UAS at HedS-FR

Elena Mugellini

Quentin Meteier

Professor in Computer Science at HEIA-FR Head of HumanTech Institute Post-doc in Computer Science at HumanTech Institute

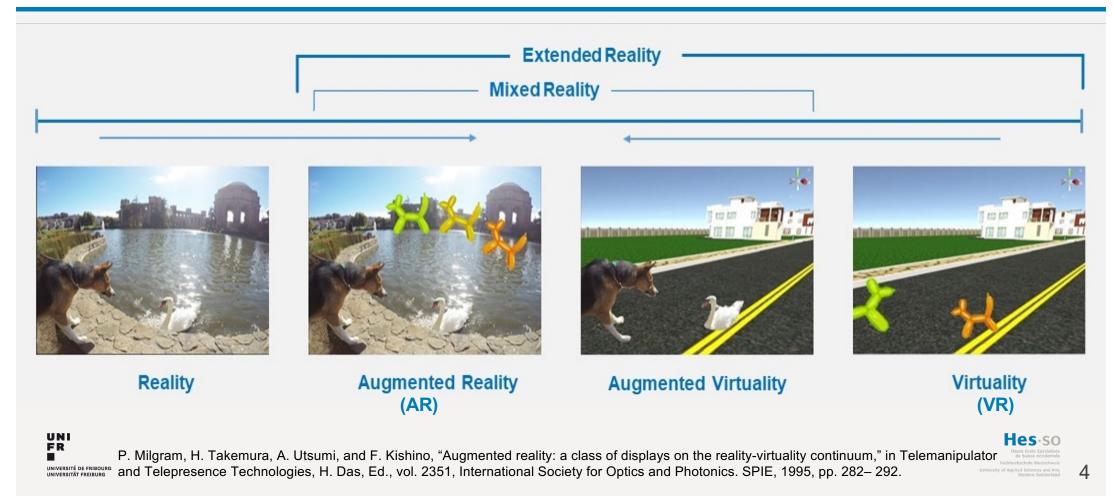
2

IMMERSIVE TECHNOLOGIES

Definition: Immersive technologies are **digital technologies** that create a **sense of presence** and **immersion** in a virtual environment, typically through the use of virtual reality (VR), augmented reality (AR), and mixed reality (MR) technologies.

These technologies aim to simulate a realistic environment or **experience that engages** the user's senses and perception, creating a feeling of being fully immersed in a digital world.

3



Technology for Human Wellbeing Institute

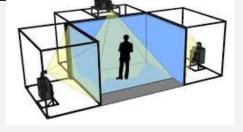
REALITY-VIRTUALITY CONTINUUM

IMMERSIVE TECHNOLOGIES

Meta Quest 2

UNI Fr

UNIVERSITÉ DE FRIBOURG


UNIVERSITÄT FREIBURG

Very Large Screen, CAVE - (VR)

Hand-held Hes-so device - (AR)

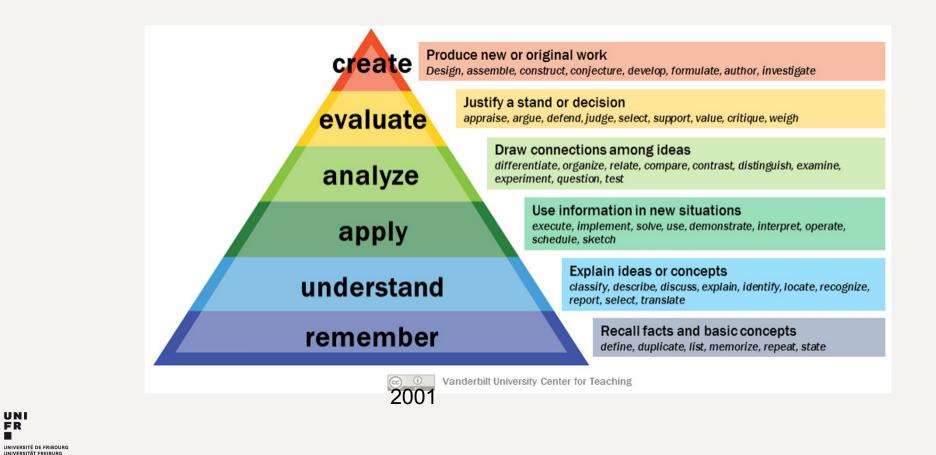
WHY IMMERSIVE TECHNOLOGY IN ACADEMIC EDUCATION?

Support different learning

- Vocational learning
- Experiential learning or learning by doing
- Situated learning faster transfer rate from theory to practice
- \rightarrow knowledge must be taught in context and not in the abstract!

Benefits

- Increased student engagement
- Deeper subject understanding and longer retention
- Increased student success
- Increased rate of transfer
- Development of lifelong skills


FR

Technology for Human Wellbeing Institute

"REVISED" BLOOM'S TAXONOMY

7

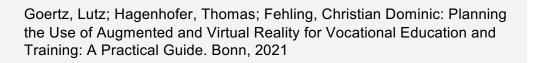
https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy/

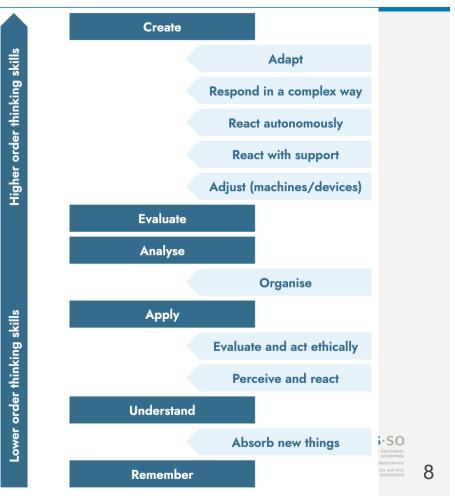
UNI

UNIVERSITÉ DE FRIBOURG

UNIVERSITÄT FREIBURG

FR


Haute école d'ingénierie et d'architecture Fribourg Hochschule für Technik und Architektur Freiburg HumanTech Technology for Human Wellbeing Institute


EXTENSION OF REVISED BLOOM'S TAXONOMY

Extension of Revised Bloom's taxonomy for immersive technology learning

Affective Learning Objectives

• designed to change an individual's attitude, choices, and relationships

Haute école d'ingénierie et d'architecture Fribourg Hochschule für Technik und Architektur Freiburg

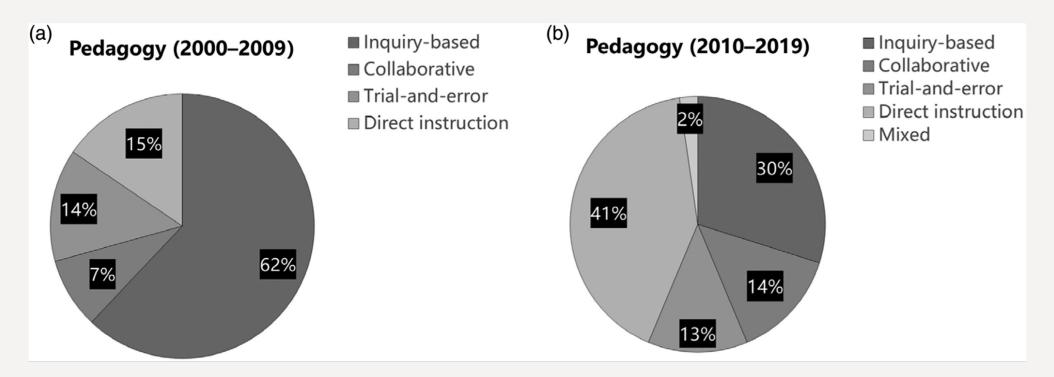
VIRTUAL REALITY IN HIGHER EDUCATION IN THE LAST 20 YEARS - I

Discipline	Elementary	Middle school	High school	K-12 mixed ^a	Higher Ed	Total
Basic science	5	4	10	2	16	37
Social science	10	5	1	0	21	37
Mathematics	3	2	0	0	1	6
Language	2	1	1	1	8	13
Health and medicine	6	4	3	1	32	46
Engineering	0	1	0	0	14	15
Other ^b	1	0	1	0	1	3
Total	27	17	16	4	93	157

TABLE 2 Number of publications by disciplinary field and school setting

UNIVERSITÉ DE FRIBOURG

H.Luo, G. Li, Q. Feng, Y. Yang, M. Zuo. "Virtual reality in K-12 and higher education: A systematic review of the literature from 2000 to 2019", Journal of Computer Assisted Learning, Wildey, 2021. DOI: 10.1111/jcal.12538

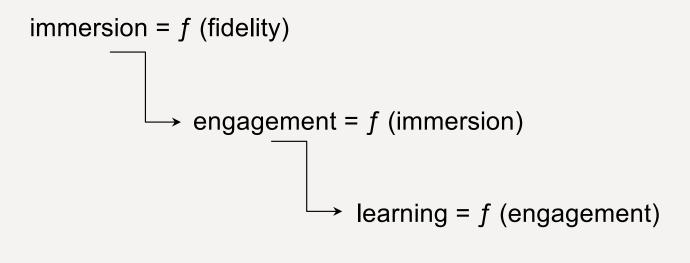


Haute école d'ingénierie et d'architecture Fribourg Hochschule für Technik und Architektur Freiburg

VIRTUAL REALITY IN HIGHER EDUCATION IN THE LAST 20 YEARS - II

UNIVERSITÉ DE FRIBOURG

H.Luo, G. Li, Q. Feng, Y. Yang, M. Zuo. "Virtual reality in K-12 and higher education: A systematic review of the literature from 2000 to 2019", Journal of Computer Assisted Learning, Wildey, 2021. DOI: 10.1111/jcal.12538



Technology for Human Wellbeing Institute

IMMERSIVE TECHNOLOGY PARADOXES

Is this true?

VIRTUAL PEOPLE CLASS @ STANFORD UNIVERSITY

Since 2021 - 200 students doing classes into a virtual classroom

Technology for Human Wellbeing Institute

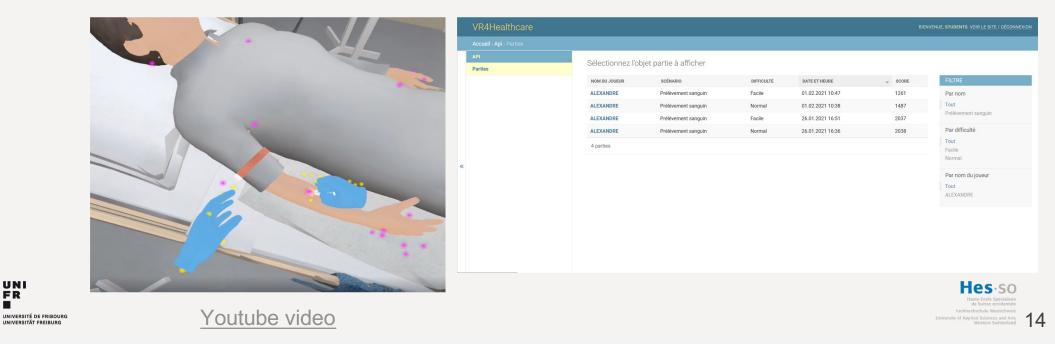
TEACHING-LEARNING SCENARIOS

Some examples

- Motor skills learning
- Dealing with unfamiliar situations
- Safety and accident prevention
- Interaction with machines
- Acquisition of professional competencies
- Understand complex concepts/physical phenomena
- Assistance systems
- Learning self-reflection
- . . .

UNI

FR



SOME EXAMPLES: VR FOR ACQUISITION OF PROFESSIONAL COMPETENCIES

Target: nursing student

Objective: Asepsis - Learning a basic nursing skill

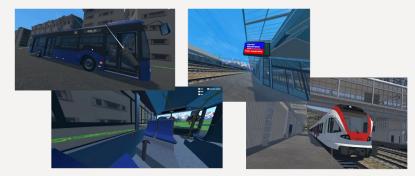
Gamified scenario: ranking with points according to successful and unsuccessful steps (with student's name)

Target: Young people (12-18 years old) with intellectual disabilities (ID)

Problematic: Train to perform several complex daily tasks

- regularly
- while being accompanied by one or more supervisors
- situations difficult to reproduce systematically in the real world

Objective: Use of virtual reality (VR)


- to allow the simulation of these learning situations
- to perform learning exercises with teenagers with ID
- to customize each scenario for the students' learning objectives

UNI

Youtube video

Some examples: VR for Safety and accident prevention

Target: Restaurant workers

Objective: Health, safety and hygiene in the Kitchen

- Learning good practices through hands-on practice, without risk, and in autonomy
- 4 training scenarios
- #1: Storing dangerous products in the retention bins
- #2: Carrying a load
- #3: Opening an oven
- #4: Fryer fire

UNIVERSITÉ DE FRIBOURG

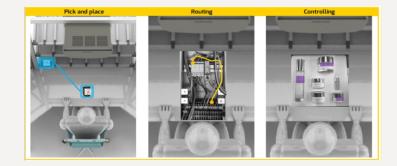
Haute école d'ingénierie et d'architecture Fribourg Hochschule für Technik und Architektur Freiburg

HumanTech Technology for Human Wellbeing Institute

Some examples: AR for Assistance systems

Target: People with cognitive disabilities **Objective:** Smart assembly assistant

- Track hands from RGB streams using Deep Learning
- Track operations in order to avoid errors
- Project informations directly on assembly table


• Benefits

UNIVERSITÉ DE FRIBOURG UNIVERSITÄT FREIBURG

- Self-learning of the operator, manager does not need to supervise constantly, also reduces stress
- Prevent assembly error
- Reduce workload of «managers »
 in order to let them better assist individuals

Schematic view of the system

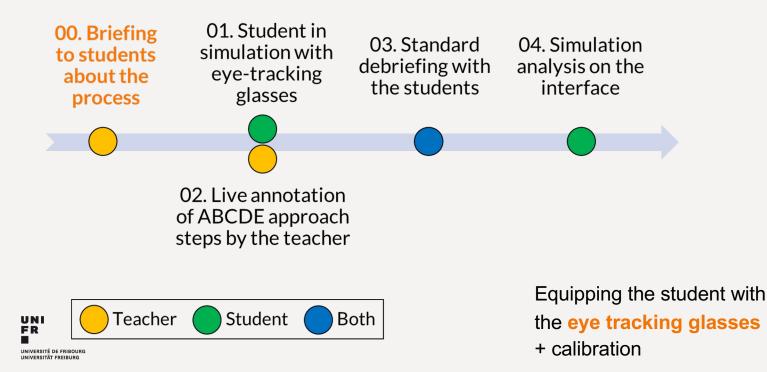
Youtube video

A MORE IN DEPTH EXAMPLE: EYE TRACKING & METACOGNITION IN NURSING EDUCATION - I

A practical use case

- In nursing, simulation has become an essential tool to develop clinical reasoning/judgement and decision-making.
- In the School of Health Science in Fribourg, a clinical reasoning technique using a systematic approach to assess and treat the patient's Airway, Breathing, Circulation, Disability, and Exposure (ABCDE) has been developed.

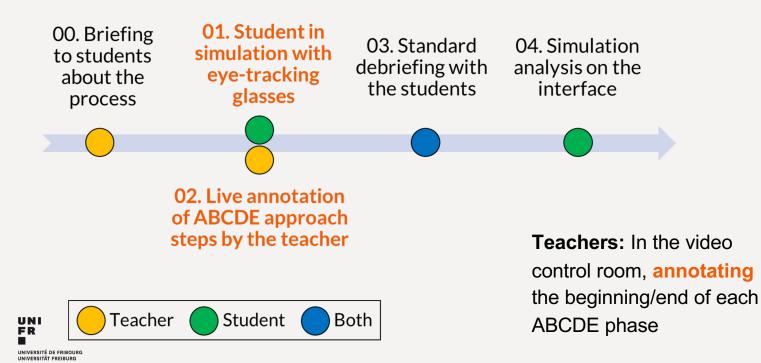
Goal : improve the application of this **systematic ABCDE approach** throughout the students' curriculum through a better understanding of their metacognition, thanks to **eye-tracking** in a simulation.



A MORE IN DEPTH EXAMPLE: EYE TRACKING & METACOGNITION IN NURSING EDUCATION - II

The Pedagogical Process

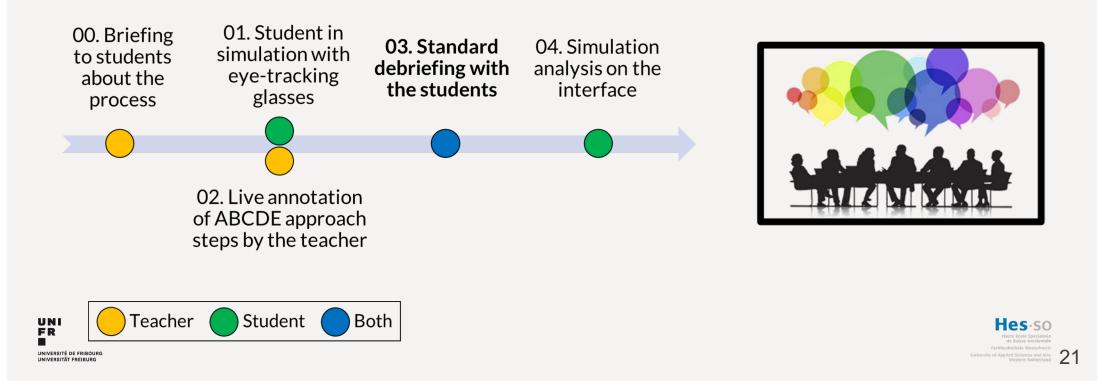
Pupil Invisible glasses



A MORE IN DEPTH EXAMPLE: EYE TRACKING & METACOGNITION IN NURSING EDUCATION - III

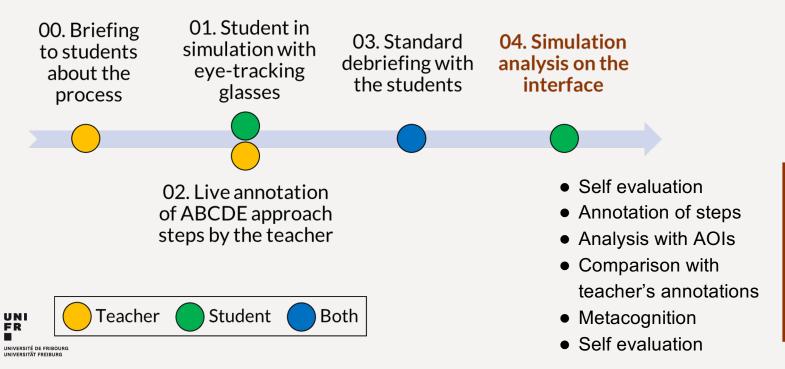
The Pedagogical Process

Students: perform care and clinical reasoning through the ABCDE's systematic approach



A MORE IN DEPTH EXAMPLE: EYE TRACKING & METACOGNITION IN NURSING EDUCATION - IV

The Pedagogical Process



A MORE IN DEPTH EXAMPLE: EYE TRACKING & METACOGNITION IN NURSING EDUCATION - V

The Pedagogical Process

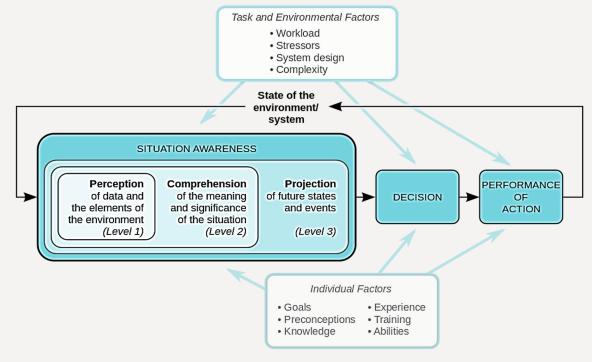
METACOGNITION - DEFINITION

Metacognition refers to the ability to monitor and regulate one's own thinking processes. This includes the ability:

- to plan,
- set goals,
- evaluate progress,
- and adjust strategies as needed in order to achieve desired outcomes.
 Metacognition is often considered a key component of successful learning and problem solving.

Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive–developmental inquiry. American Psychologist, 34(10), 906-911.

UNIVERSITÉ DE FRIBOURG



SITUATION AWARENESS (SA) - DEFINITION

"the **perception** of elements of the environment in a volume of time and space, the **understanding** of their meanings, and the **projection** of their state into the near future".

Endsley, M.R. (1995). Toward a Theory of Situation Awareness in Dynamic Systems. Human Factors: The Journal of Human Factors and Ergonomics Society, 37, 32 - 64.

Heds FR

chschule für Gesundheit Freiburg

Eye movements can be classified into three discrete movement motifs [3, 4] :

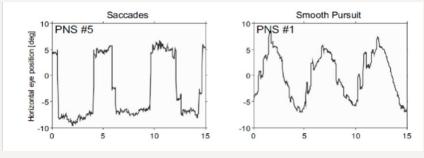
- Saccade = a quick, simultaneous movement of both eyes between two or more phases of fixation in the same direction [3]. Shift the focus of the eyes abruptly (typically in 20–100 ms)
- **Fixation** = longer periods (0.2–0.6 s) of steady focus on an object
- **Smooth pursuit** = continuous movements of the eye to track a moving object.

Simon Viktória. A face is scanned by saccadic movements of the observer's eye. 2009.
 Caroline Schraa-Tam et al. « An fMRI study on smooth pursuit and fixation suppression of the optokinetic reflex using similar visual stimulation ». In : Experimental brain research. Experimentelle Hirnforschung
 Findlay J, Walker R. Human saccadic eye movements. Scholarpedia. 2012 Jul 27;7(7):5095.
 Rayner K, Castelhano M. Eye movements. Scholarpedia. 2007 Oct 9;2(10):3649.

Haute école d'ingénierie et d'architecture Fribourg

Hochschule für Technik und Architektur Freiburg

HumanTech


Technology for

Human Wellbeing Institute

Hes-so

25

Example of saccadic movements [1]

Saccadic movements vs. Smooth pursuit movements [2]

UNIVERSITÉ DE FRIBOURG

UNIVERSITÄT FREIBURG

EYE TRACKING - HARDWARE

Remote eye-tracker

Eye-tracking glasses (Wearable)

Tobii Pro Glasses 3

Pupil Invisible

Haute école d'ingénierie et d'architecture Fribourg Hochschule für Technik und Architektur Freiburg

EYE-TRACKING : EDUCATION INNOVATION IN NURSING - INTERFACE V1

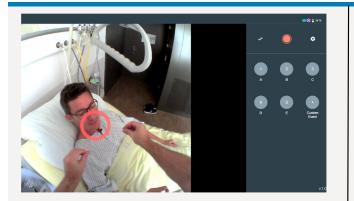
nnotation des phases		Frise chronologique		Timeli	ne of annotated steps	
	Tellephone : OnePlus B : 192.168.65.1 Batterie : 65% Stockage : 52.1 68		43	81		
	• #	Voici la répartition de vos points (de fixations visuels sur l'ensemi	ole de la simulation:		
	c	Zone d'intérêt Fréquence de fixation sur la zone d'intérêt [fixations/sec] Temps passé sur la zone d'intérêt [secondes] Pourcentage de temps passé sur la zone				
		bras 0.0	0	0.0 %		
	•	chariot 0.0	0	0.0 %		
		jambe 0.0 tete 0.0	0 0	0.0 %	Eye-tracking metrics	
	Fin phase	Questions 2.4) En analysant le tableau ci-dessus, que vous év	voquent les résultats ?		Questions	
Nor	🚺 Supprimer 🛛 🛩 Confirmer					

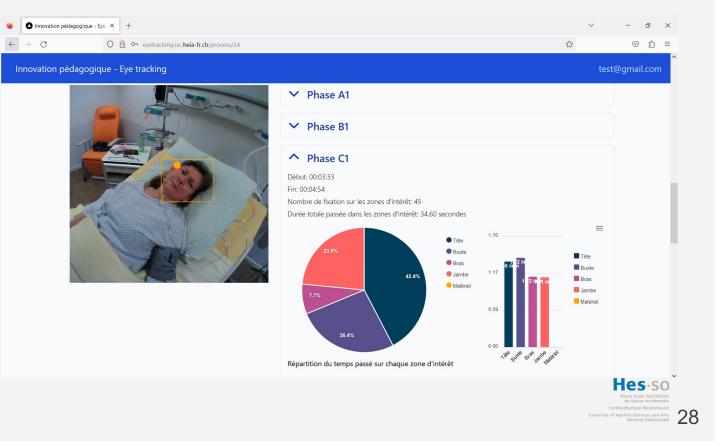
During the simulation:

Streaming of the student's vision with gaze overlay and annotation of steps by the teacher on the interface

UNI FR UNIVERSITÉ DE FRIBOURG UNIVERSITÄT FREIBURG

After the simulation:


Student work in autonomy: Review and annotate own simulation (with gaze overlay), answer questions that prompt him/her to reflect on his/her metacognitive process


EYE-TRACKING : EDUCATION INNOVATION IN NURSING - INTERFACE V2

During the simulation

After the simulation

UNI

UNIVERSITÉ DE FRIBOURG

UNIVERSITÄT FREIBURG

FR

Haute école d'ingénierie et d'architecture Fribourg Hochschule für Technik und Architektur Freiburg

USER EVALUATION : PRELIMINARY RESULTS

Session 1: 19 students participated - first version of the interface (v1)

Results	Self-made questionnaire (5-points Likert scales, subjective data)	Short French version of the	
UX/UI +	Glasses : easy to use (4.73) and non-invasive (4.33) Interface (4.47) and instructions/video tutorial (4.8) clear and easy to use	User Experience Questionnaire Pragmatic quality : 1.72/3 Hedonic quality : 2.32/3	
Learning	Better identification of elements for their patient's nursing (4.33) and cognitive reasoning (4.33), enhanced learning thanks to eye-tracking (4.2) Positive change for their next intervention (4.46)	Overall : 2.02/3 User experience of the process considered as excellent regarding	
-	The annotation of the ABCDE approach phases (4) The accuracy of the eye-tracking metrics (3.66)	the benchmark set by the auth questionnaire.	

These preliminary results are encouraging for the further development of this innovative pedagogical process in Switzerland.

Session 2 : 15 students, 14 are currently analysing their simulation on the redesigned web interface (v2)

Martin Schrepp, Andreas Hinderks, and Jörg Thomaschewski. 2017. Design and Evaluation of a Short Version of the User Experience Questionnaire (UEQ-S). Int. J. Interact. Multim. Artif. Intell. 4 (2017), 103–108.

CONCLUSION

Haute école d'ingénierie et d'architecture Fribourg Hochschule für Technik und Architektur Freiburg

Take aways

- Immersive technology can contribute to support learning (engagement, retention, transfer rate, etc.)
- Immersive technology is not a magic box!
- It is a tool and not an end!
- The magic comes from the "users" and not the computer scientists!

→ Interdisciplinarity is essential!

If you enjoyed this seminar, don't miss next episode! 😃: **3rd of November 2023**

https://www.unifr.ch/digitalskills/fr/teacher/course.html?cid=2631

Haute école d'ingénierie et d'architecture Fribourg Hochschule für Technik und Architektur Freiburg

Technology for Human Wellbeing Institute

Thank you for attending!

Haute école de santé Fribourg Hochschule für Gesundheit Freiburg Route des Arsenaux 16a 1700 Fribourg/Freiburg

T. 026 429 60 00 heds@hefr.ch www.heds-fr.ch HumanTech Institute Haute école d'ingénierie et d'architecture Fribourg Boulevard de Pérolles 80 1700 Fribourg/Freiburg

> T. 026 429 66 11 www.heia-fr.ch humantech.institute

Hes.so Haute Ecole Specialisée de Suise eccidentale Fachhochschule Westschweiz University of Applied Sciences and Arts Western Switzerland

UNI

UNIVERSITÉ DE FRIBOURG

UNIVERSITÄT FREIBURG

FR

CONTACT INFORMATION AND LINKS TO THE VIDEOS

Contact Information

- Elena Mugellini <u>elena.mugellini@hefr.ch</u>
- Quentin Meteier quentin.meteier@hefr.ch
- Jean-Michel Vasse jean-michel.vasse@hefr.ch

Links to the videos

- Asepsis <u>https://www.youtube.com/watch?v=N-</u> p04aGw7vw&list=PLIWFApYKGnDfyA6_KduTMug7tVAS4TOLr&index=4
- Young people with intellectual disabilities
 <u>https://www.youtube.com/watch?v=8C3Hjya2S_I&list=PLIWFApYKGnDcVxhsi2V6-PPUYasFHysre</u>
- Hygiene and security in the kitchen https://www.youtube.com/watch?v=CkatyBltsyM&list=PLIWFApYKGnDeyKRORiG-31qY7IxGKtUTN&index=1

